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Abstract

We describe an ongoing project in learning to perform prim-
itive actions from demonstrations using an interactive inter-
face. In our previous work, we have used demonstrations
captured from humans performing actions as training sam-
ples for a neural network-based trajectory model of actions
to be performed by a computational agent in novel setups.
We found that our original framework had some limitations
that we hope to overcome by incorporating communication
between the human and the computational agent, using the
interaction between them to fine-tune the model learned by
the machine. We propose a framework that uses multimodal
human-computer interaction to teach action concepts to ma-
chines, making use of both live demonstration and commu-
nication through natural language, as two distinct teaching
modalities, while requiring few training samples.

Introduction
This work takes a position on learning primitive actions or
interpretations of low-level motion predicates by the Learn-
ing from Demonstration (LfD) approach. LfD can be traced
back to the 1980s, in the form of automatic robot program-
ming (e.g., Lozano-Perez (1983)). Early LfD is typically
referred to as teaching by showing or guiding, in which a
robot’s effectors could be moved to desired positions, and
the robotic controller records its coordinates and rotations
for later re-enactment. In this study, we instead focus on
a methodology to teach action concepts to computational
agents, allowing us to experiment with a proxy for the robot
without concern for physically controlling the effectors.

As discussed in Chernova and Thomaz (2014), there are
typically two sub-categories of actions that can be taught to
robots: 1) high-level tasks that are hierarchical combinations
of lower-level motion trajectories; and 2) low-level motion
trajectories, the focus of this study, that can be taught by us-
ing a feature-matching method. We have experimented with
offline learning motion trajectories from captured demon-
strations. This method has some limitations, including re-
quiring multiple samples as opposed to one-shot (or few-
shot) learning, and being unable to accept corrections to gen-
erated examples beyond training on more data (Do, Krish-
naswamy, and Pustejovsky, 2017).
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There is a wealth of prior research on hierarchical learn-
ing of complex tasks from simpler actions (Veeraraghavan,
Papanikolopoulos, and Schrater, 2007; Dubba et al., 2015;
Wu et al., 2015; Alayrac et al., 2016; Fernando, Shirazi, and
Gould, 2017). Hidden Markov Model (HMM) and Gaussian
Mixture Model (GMM) have been used extensively in pre-
vious work (Akgun et al., 2012; Calinon and Billard, 2007)
to model the learning and the reenacting components. Do
(2018) proposed to use Reinforcement Learning (RL) di-
rected by a shape rewarding function learned from sample
trajectories. In contrast, we are investigating LfD methods to
teach primitive concepts such as move A around B, or lean
A against B, or build a row, or build a stack from blocks
on the table, and we propose a method to learn these action
concepts from demonstrations, supplemented by interaction
with the agent to verify or correct some of the suppositions
that the agent learns while building a demonstration-trained
model.

Recently, Mohseni-Kabir et al. (2018) proposed a
methodology to jointly learn primitive actions and high-level
tasks from visual demonstrations, with the support of an in-
teractive question-answering interface. In this framework,
robots ask questions in order to group primitive actions to-
gether to create high-level actions. In a similar fashion, Lin-
des et al. (2017) teach a task to robots, such as discard an
object, by giving step-by-step instructions built on top of the
simple actions move, pick up, put down; Maeda et al. (2017)
showcase a system wherein a robot makes active requests
and decisions in the course of learning primitive actions in-
crementally; Tellex et al. (2011) use probabilistic graphical
models to ground natural language commands to the situ-
ation. We think these types of communicative frameworks
can be extended to learning low-level actions.

We view this direction of interactive learning as particu-
larly promising, where symmetric communication between
humans and robots can be used to complement LfD as a
modality for teaching (cf. Thomaz and Breazeal (2008)).

Related research
Naturalistic communication between humans tends to be
multimodal (Veinott et al., 1999; Narayana et al., 2018). Hu-
man speech is often supplemented by non-verbal commu-
nication (gestures, body language, demonstration/“acting”),
while linguistic expressions provide both transparent and
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abstract information regarding the actions and events in
the situation, much of which is not readily available from
demonstrations. Dynamic event structure (Pustejovsky and
Moszkowicz, 2011; Pustejovsky, 2013) is one approach to
language meaning that formally encodes events as programs
in a dynamic logic with an operational semantics. These
events very naturally map to the sub-steps undertaken dur-
ing the course of demonstrating a new action (“grasp”, “pick
up”, “move to location”, etc.). ”Motion verbs can be di-
vided into complementary manner- or path-oriented pred-
icates and adjuncts (Jackendoff, 1983). Changes over time
can be neatly encapsulated in durative verbs as well as in
gestures or deictic referents denoting trajectory and direc-
tion. This allows humans to express where an object should
be or go either using linguistic descriptions or by directly
indicating approximate paths and locations.

Computational agents typically lack the infrastructure re-
quired to learn new concepts solely through linguistic de-
scription, often due to an inability to fully capture the in-
tricate semantics of natural language. Thus, instead of pro-
viding verbose instructions, we treat the agent as an active
learner who interacts with the teacher to understand new
concepts, as suggested in Chernova and Thomaz (2014).

Research in cognition (cf. Agam and Sekuler (2008)) has
investigated how humans imitate trajectories of different
shapes, giving a strong indication that we tend to be able to
better remember trajectories that follow a consistent pattern
(curvature consistency). In this paper, we hypothesize that
human primitive action concepts exhibit relatively transpar-
ent conceptual consistencies. We hope to learn these consis-
tencies directly from data represented as sequential features
on a frame-by-frame basis from demonstrations.

Qualitative spatial (QS) representations have proven use-
ful in analogical reasoning, allowing machine learning al-
gorithms to perform generalizations over smaller amounts
of data than required for traditional quantitative representa-
tions (McLure, Friedman, and Forbus, 2015). This allows
it to serve as a bias in the model, reflecting human real-
world knowledge as the human interlocutor would be ex-
pected to have. Libraries of qualitative relations often draw
extensively from longstanding observations of human bias
in psychological experiments on spatial processing (Stevens
and Coupe, 1978; Gentner and Collins, 1981; Weld and
De Kleer, 2013). Thus a machine learning model trained
on data that contains bias from humans should reflect those
same biases and the model should demonstrate judgments
of those of human subjects, in spatial reasoning as in other
domains (Caliskan, Bryson, and Narayanan, 2017). In a lim-
ited sense, biases can be defined as modes (in a statistical
sense) of a non-uniform distribution in a descriptive space.
For example, our bias toward the value of 0 (in a range from
0 to∞) allows us to qualitatively distinguish between when
two objects are externally connected (i.e., with 0 or near-0
distance between them) or disconnected.

To summarize, we exploit the ability to express and de-
scribe actions in multiple modalities, in order to explore
how to impart human concepts and biases to AI models. We
use the QS representations as the abstraction level to bridge
demonstrative data, action concepts, and the action language

used and expressed by computational agents.

A learning scenario
In the following conversation, both a human user and an
avatar can observe a table containing both a red block and
a green block:

HUMAN: Can you move the red block around the green
block?

ROBOT: Can you show me what “around” means?
HUMAN: Yes. [Slides the red block clockwise around the green block on

the table]
ROBOT: Is the green block always stationary?
HUMAN: Yes.
ROBOT: Is the red block always moving?
HUMAN: Yes.
ROBOT: Is the red block always about the same distance from

the green block?
HUMAN: Yes.
ROBOT: Does the red block always move in the same direction

relative to the green block?
HUMAN: Yes.
ROBOT: OK. Let me slide the red block around the green block.

[Performs the action slide the red block around the green block, clock-
wise]

This scenario displays an effort to teach a machine a concept
that is rather difficult to learn given only one or a few demon-
strative samples. We also want to demonstrate the desiderata
of a machine learning system that can facilitate that learning:

• It can recognize pattern consistencies from feature data.
Consistencies should be in formulaic representations that
can be clearly articulated in natural language expressions.

• Pattern consistencies can be evaluated over multiple
frames of the same demonstration. More importantly, a
desirable framework should allow us to estimate the con-
fidence of a pattern intended by the instructor.

• The system should take a proactive role in interaction, by
asking questions pertaining to patterns need to be verified.

• In terms of natural language interaction, the system has to
be able to identify novel ideas as missing concepts in its
semantic framework as well as to generate questions for
verification of the recognized patterns.

Framework
Figure 1 depicts the architecture of our learning system. For
the top component, our experimental setup makes use of
simple markers attached to objects for recognition and track-
ing. For natural language grounding, our proposal leverage
the advancement of speech recognition (Povey et al., 2011)
and syntactic analysis tools (Chen and Manning, 2014;
Reddy et al., 2017) to generate a grounded interpretation
from spoken language. For the bottom component, we dis-
cuss the use of “mined patterns” as constraints for action
reenactment.

The focus in this section is the middle component (inside
the dotted box), including methods to mine pattern consis-
tencies from demonstrative data, then pose generated natural



Figure 1: Interactive learning framework

language questions to human teachers to ask for confirma-
tion of conceptual understanding, and use this understand-
ing to constrain action performance when presented with a
novel context or setup.

Representations
To represent pattern consistencies, we use a set of qualitative
features that are widely used in the Qualitative Spatial Rea-
soning (QSR) community. We have used these features as
representation for action recognition (Do and Pustejovsky,
2017) This is not intended to be an exhaustive set of fea-
tures, and other feature sets, such as the Region Connection
Calculus (RCC) (Cohn et al., 1997), could be used as well.

• CARDINAL DIRECTION (CD) (Andrew, Mark, and White,
1991), transforms compass relations between two objects into
canonical directions such as North, North-east, etc., producing 9
different values, including one for where two locations are iden-
tical. This feature can be used for the relative direction between
two objects, for an object’s orientation, or for its direction of
movement.

• MOVING or STATIC (MV) measures whether a point is moving
or not.

• QUALITATIVE DISTANCE CALCULUS (QDC) discretizes the
distance between two moving points, e.g., the distance between
two centers of two blocks.

• QUALITATIVE TRAJECTORY CALCULUS (Double Cross):
QTCC is a representation of motions between two objects by
considering them as two moving point objects (MPOs) (Dela-
fontaine, Cohn, and Van de Weghe, 2011). We consider two fea-
ture types of this set, whether two points are moving toward each
other (QTCC1) or whether they are moving clockwise or coun-
terclockwise w.r.t. each other (QTCC3).

These qualitative features can be used to create the for-
mulaic pattern consistencies that we are looking for in the
previous discussion. All features can be interpreted as uni-
variate or multivariate functions binding to tracked objects
at a certain time frame. Hereafter, let fkt (d)(x, y) denote the
qualitative feature extracted from demonstration d at frame
t of feature type k between two objects x and y.

Pattern mining
The following describes some of the pattern consistencies
that we are hoping to learn from data:

• fk0 (d)(x, y) ?α where ? can be any comparison operator
<,>,=,≤,≥, 6=, and α is a constant value. This is a state
to be satisfied at the start of a demonstration.

• fkF (d)(x, y) ?α is a final (F) state to be satisfied at the end
of a demonstration.

• ∀tfkt (d)(x, y) ?α describes a feature value that stays con-
stant across all frames.

• ∀tfkt (d)(x, y) ? fkt+1(d)(x
′, y′) describes a feature rela-

tionship between two consecutive frames. We allow a
form of dynamic object binding so that it is not neces-
sary that (x, y) = (x′, y′), i.e., object binding is made by
evaluating the demonstration d at time t. However, in the
example of “Slide A around B”, (x,y) always bind to (A,
B), because the system can map these directly from the
instruction given to the demonstration.

• fk0 (d)(x, y) ? fkF (d)(x
′, y′) relates features at the start

(frame 0) and end (frame F) of the demonstration.

These patterns p ∈ P , where P is a partially ordered set.
We define a precedence relation,� , so that two patterns can
be compared. p1 � p2 if p1 is logically superseded by p2.
For example, p1 = fk0 (d)(x, y) < α takes precedence over
p2 = fk0 (d)(x, y) 6= α.

To detect these patterns from data, we can define a func-
tion over patterns q(p) that measures how confident we are
that a pattern is intended in an action concept. This value
should be higher when we have more demonstrations that
exhibit the same pattern. Furthermore, q should also give a
pattern with a higher precedence a higher salience. The in-
tuition is that if p1 � p2, and we have q(p1) > t∧ q(p2) > t
where t is a confidence threshold, the system should ask
for confirmation about p1 before asking about p2. When the
teacher confirms p1 to be true, the system then can take p2
as trivially true.

Though attaining such a function is not trivial, we will
give an illustrative example. Assume a 4-part quantization
of QDC (”adjacent”, ”close”, ”far”, ”very far”), we define a
bias b over these values that characterizes the likelihood of a
quantized region v to be recognizable, for example b = 1/v.
Finally, let domain(p) be the range of the feature function
f that p uses. Now, we define a heuristic function q(p) as
follows:

q(p) =
probability(p) ∗ bias(domain(p))

|domain(p)|
whereas probability(p) is the probability that p is cor-
rect among all samples, bias(domain(p)) =

∑
v b(v), and

|domain(p)| is the size of the domain. For example, if in
80% of the samples, f = 0 and in the remaining 20%,
f = 1, we have q(f = 0) = 0.8 ∗ 1/1 = 0.8, q(f <= 1) =
1 ∗ (1 + 0.5)/2 = 0.75, therefore, q(f <= 1) < q(f = 0).
If the ratio is 50:50, q(f <= 1) > q(f = 0).

Generating natural language questions
Now that the system has patterns of qualitative features from
observations, each associated with a confidence score of
consistency from the function q, it needs to confirm the in-
tentionality of the patterns with the teacher. To come up with
a proper set of questions to ask, first the patterns need to be
arranged into a queue in an order using the precedence re-
lation and confidence value, then the system forms natural
language questions from the queue of patterns that need to
be confirmed. When the system gets a confirmation, it will
iterate through the queue to remove now-implicit patterns.



For instance, suppose p1 “object X moving to the east”
and p2 “X moving in one direction” where p1 � p2. When
the teacher confirms p1 first, the system does not have to
ask for confirmation on p2. However, if the system is given
only one demonstration, the function q might not assign high
confidence to p1 ≡ ∀tfMV dir

t (d)(X) = EAST but higher
value to p2 ≡ ∀t(fMV dir

t (d)(X) = fMV dir
t+1 (d)(X))

based on specificity level of p1; p2 does not rely on actual
values to which the feature evaluates. In such a case the sys-
tem prioritizes p2 in the confirmation queue, if p1 gets en-
queued at all with confidence threshold.

For linguistic translation, we use a mapping from quali-
tative features and time interval of patterns to linguistic de-
scriptions that, in turn, are composed to complete natural
language sentences using the rule-based slot-filling mecha-
nism in the interactive interface (Krishnaswamy and Puste-
jovsky, 2016) (see below).

Performing actions in novel situations
In previous work (Do, 2018), we have addressed a few dif-
ferent approaches to performing learned actions in a novel
situations, e.g., RL and search algorithms. We must incor-
porate the learned pattern consistencies from the previous
discussion as constraints in the search space of the exe-
cution planning. The algorithm we use for action reenact-
ment is a search algorithm, in which an execution is a chain
of planned simple steps, such as “Move(A,coordinate)” or
“Rotate(A,angle)”. A simple search algorithm will generate
a set of random candidate steps on the search space, then
qualify whether a new step satisfies the constraints. At the
same time, the system can verify if a state satisfies a termi-
nation condition and decide to announce the completion of
the action. Best-first or beam searches can both be used in
this scenario.

Experiments

Figure 2: Sample interaction with avatar
Our interaction framework is built on the VoxML/VoxSim

platform (Pustejovsky and Krishnaswamy, 2016; Krish-
naswamy and Pustejovsky, 2016), which facilitates the en-
coding of common-sense knowledge about events and ob-
jects, and their visualization in a 3D environment as a
demonstration of how the computer interprets them. The in-
teraction system is presented in full by Krishnaswamy et al.
(2017). A human user, standing before a Kinect R© camera
and a monitor that displays an avatar and a table with blocks
on it can, through the use of language and gesture, direct
the avatar to perform a set of actions with the blocks. For
instance, by indicating a block (e.g., by saying “the purple
block” or pointing to the purple block), and then pointing to
a new location, the user can direct the avatar to move that
block to that new location.

At points in the interaction, the avatar may express un-
certainty about an action or need to confirm it. This may

be asking which block the user is indicating, or confirm-
ing that the indicated location is the intended destination of
the block. When the avatar encounters a symbol sequence
such as point at(block7); point at(L1) with the existing
instruction that the block is to be slid, it can insert these
symbols into a predicate structure, e.g., slide(block7, L1)
and then disambiguate any piece that it needs to by translat-
ing those symbols into a natural language output. On this
primitive level, these simple symbols are encoded in the
model, and so with a learning-based approach, the question
becomes one of being able to extract more complex symbols
in need of confirmation or disambiguation from a learning
algorithm, determining what to ask about, and how to phrase
the question to prompt a “yes” or “no” answer.

Each time the avatar completes an action (i.e., finishes
moving an object), we write out the complete state of the
scene, with the positions and rotations of all blocks. From
this raw data, we extract qualitative spatial relations to be
fed into the learning module, using QSRLib (Gatsoulis et
al., 2016).

Some examples of patterns we expect to mine from action
demonstrations are given here:

Move A around B
• ∀tfMV

t (A) = 1 and ∀tfMV
t (B) = 0

• ∀tfQTCC3
t (A,B) = fQTCC3

t+1 (A,B)

• fCD
0 (A,B) = fCD

F (A,B)

Make a row of blocks: we assume that a “row of blocks” means
blocks that are evenly spaced along a single axis. Let us assume that
all blocks make a set S. Let us define some functions on S (that we
called dynamic binding in the previous section): L(S) is the last
moved block in S; C(S) is a selected block for the next move; then
we have the follows:

• ∀tfQDC
t (L(S), C(S)) = fQDC

t+1 (L(S), C(S))

• ∀tfCD
t (L(S), C(S)) = fCD

t+1 (L(S), C(S))

Conclusion and Discussion
Currently, we are working with data captured from the interactive
interface, in which a demonstration has already been broken down
into multiple steps (Figure 2). To extend this framework to work
with real demonstrations, where data comes in from a continuous
stream, we can capture data from real human performances using
tools such as ECAT (Do, Krishnaswamy, and Pustejovsky, 2016).
We may require processing to facilitate pattern mining, including
noise removal or “key” frame detection (cf. Asfour et al. (2008)).

It is also important that the system be able to recognize the
relationship between different action concepts. Taking two ac-
tion concepts, (1) “Move A around B” and (2) “Move A around
B clockwise”, as examples, we can see the hierarchical relation-
ship between them implies their corresponding conceptual patterns.
Therefore, our system needs to be able to update the learned con-
cept of the first action to be a superclass of the concept of the sec-
ond action.

We have proposed a system for learning primitive actions using
an interactive learning interface. By examining a specific learning
scenario, we have demonstrated various requirements of this sys-
tem. We believe such a framework can improve on the successes
of LfD methods by incorporating multimodal information through
real-time interaction to facilitate online learning from sparse data
to improve models.
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