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Abstract

In this paper, we introduce a framework in which computers
learn to enact complex temporal-spatial actions by observ-
ing humans, and outline our ongoing experiments in this do-
main. Our framework processes motion capture data of hu-
man subjects performing actions, and uses qualitative spa-
tial reasoning to learn multi-level representations for these
actions. Using reinforcement learning, these observed se-
quences are used to guide a simulated agent to perform novel
actions. To evaluate, we render the action being performed in
an embodied 3D simulation environment, which allows eval-
uators to judge whether the system has successfully learned
the novel concepts. This approach complements other plan-
ning approaches in robotics and demonstrates a method of
teaching a robotic or virtual agent to understand predicate-
level distinctions in novel concepts.

Motivation

The community surrounding “learning from (human) obser-
vation” (LfO) studies how computational and robotic agents
can learn to perform complex tasks by observing humans
(Young and Hawes 2015). Work in this area can be traced
back to reinforcement learning studies by (Smart and Kael-
bling 2002) or (Asada, Uchibe, and Hosoda 1999), which
closely resembles the way humans learn. Children, as early
as 14 months old, can imitate adults in a variety of tasks,
such as turning on and off a light-box, and can even interpret
the intentions behind actions and consider all constraints in-
volved (Gergely, Bekkering, and Király 2002).

Most robots developed in the previous decades have
shipped with pre-installed programs, limited to a set of pre-
defined functionalities. Learning approaches in the robotics
community seek to move toward smarter and more adaptable
robots, for the following reasons, among others:

• Consumer desire for mobile or household assistant robots
that can perform multiple tasks with a flexible apparatus,
such as multiple grasping arms (Bogue 2017). Robots
with behavioral robustness can learn from a wider range
of experiences by interacting with humans in a dynamic
environment (Hawes et al. 2017).
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• Advances in deep learning have afforded robotic agents a
high-level understanding of embedded semantics in multi-
ple modalities, including language, gesture, object recog-
nition, and navigation. This increases the circumstances
and modalities available for robotic learning.

Event recognition and classification have achieved re-
cent relevance in human communication with robotic agents
(Paul et al. 2017). Meanwhile, lexical computational seman-
tic approaches to events (e.g., Pustejovsky (1995), Puste-
jovsky and Moszkowicz (2011)) make it clear that event se-
mantics are compositional with their arguments.

We have previously presented an approach toward facil-
itating human communication with a computational agent,
using a rich model of events and their participants (Puste-
jovsky, Krishnaswamy, and Do 2017). Formally, we have
devised a semantic framework using Multimodal Semantic
Simulations (MSS), which can be used to encode events as
programs in a dynamic logic with an operational seman-
tics. Computationally, we have been looking at event rep-
resentation through sequential modeling, using data from 3-
dimensional video captures, to distinguish between different
event classes (Do and Pustejovsky 2017a). In this work, we
aim to bridge the gap between these two lines of research by
proposing a methodology to learn programmatic event rep-
resentations from linguistic and visual event representations.

Linguistic event representation in our framework is mod-
eled as a verbal subcategorization in a frame theory, a la
Framenet (Baker, Fillmore, and Lowe 1998), with thematic
role arguments. However, we also account for extra-verbal
factors in our event type distinction. For example, we con-
sider A moves B toward C and A moves B around C to be
different event types and we learn each event type as a sepa-
rate action.

Our visual event representation comprises visual features
extracted from tracked objects in captured videos or virtual
object positions saved from a simulation environment. Both
types of feature represent information visible to humans and
observable by a machine in an object state. Using these data
points and sequences, machines can observe humans per-
forming actions through processing captured and annotated
videos, while humans can observe machines performing ac-
tions through watching simulated scenes.

Programmatic event representation can be based on for-
mal event semantics or on features that can direct simulated
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or robotic agents to perform an action with an object of given
properties. From a human perspective, the distinction be-
tween learning to recognize and learning to perform an ac-
tion might be obvious. However from a machine’s perspec-
tive, these two tasks might require different learning meth-
ods. Our work aims to demonstrate that given an appropriate
framework, it is feasible to map between them, in a manner
similar to the way humans actually learn: by matching ac-
tions to observations.

In this paper, (1) we discuss related work in AI that fo-
cuses on the learning of action and object models, including
our own past studies; (2) we discuss several technologies and
machine learning methodologies that provide the foundation
for our experiments; (3) we discuss our ongoing experiment
to learn actions; (4) we discuss our evaluation scheme and
possible extensions to our framework.

Related Work
Work on action and object representation can generally be
divided into two types of approaches: bottom-up approaches
and top-down approaches.

Bottom-up approaches include both unsupervised and su-
pervised feature-based learning. Work such as (Duckworth
et al. 2016; Alomari et al. 2017) aims for unsupervised co-
learning of object and event representations in the same step,
and introduced the notion of a learned concept as an abstrac-
tion of feature spaces. In such a framework, “learnable” con-
cepts are any distinctions meaningful to a human, such as a
facial expression, color, object property, or action distinc-
tion, and these categories can then be assigned labels based
on their commonly-occurring features. Notable supervised
learning studies include (Koppula, Gupta, and Saxena 2013),
which jointly models the human activities and object affor-
dances, or attached behaviors which the object either facil-
itates by its geometry (which we term Gibsonian) (Gibson,
Reed, and Jones 1982), or for which it is intended to be used
(which we term “telic”) (Pustejovsky 1995). Such a model
could be used to distinguish longer activities by means of la-
beling sub-activities and object affordances: for example, la-
beling a “meal preparation” and its different subtasks based
on understanding the objects involved at each step.

The foundation of our embodied event simulation is the
modeling language known as VoxML (Visual Object Con-
cept Modeling Language) (Pustejovsky and Krishnaswamy
2016). We encode verbal programs into a dynamic logic for-
mat from which we can conduct programmatic planning of
complex events from atomic subevents. This is a top-down
approach in which verbs are encoded with their subevent
structures into programmatic “voxemes,” or visual instanti-
ations of lexemes which can then be visualized and enacted
by an agent in a virtual environment. Subevent programs
may themselves be linked to other voxemes, allowing for
condition satisfaction, as in Figure 1, where “touching” is
defined as the EC (externally connected) relation in RCC
(Region Connection Calculus (Randell et al. 1992)). This
is underspecified and may be further constrained by relative
orientations between the two objects involved: x and y.

We aim to unify the two broad types of approaches
outlined above using a form of apprenticeship learning,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

touching

LEX =

[
PRED = touching

]

TYPE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

CLASS = config
VALUE = EC

ARGS =

⎡
⎣ A1 = x:3D

A2 = y:3D

⎤
⎦

CONSTR = nil

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 1: Sample voxeme: [[TOUCHING]]

wherein a learning model observes an expert demonstrating
the task that we want it to learn to perform. We propose a
model, cf. (Abbeel and Ng 2004), in which reinforcement
learning is used as a backbone for planning, while estimat-
ing a reward function as measuring the progression of the
event-actions to be learned.

Background

Simulators

VoxSim Our simulated environment is built in VoxSim
(Krishnaswamy and Pustejovsky 2016), a semantically-
informed visual event simulator built on top of the Unity
game engine (Goldstone 2009). VoxSim contains a 3D agent
capable of manipulating objects in the virtual world by cre-
ating parent-child relationships between the objects and its
joints to simulate grasping. Assuming the simulated agent’s
skeleton is isomorphic to the joint structure of a physical
robot, this then allows us to simulate events in the 3D world
that represent real-world events (such as moving the virtual
robot around a virtual table that has blocks on it in a config-
uration that is generated from the positioning of real blocks
on a real table). The embodied agent can perform a set of
simple actions:
• ENGAGE: grasp object near its end-effector.
• MOV E(x): move end-effector (hand) to 3D point x,

with parent limb motions calculated using inverse kine-
matics

• DISENGAGE: ungrasp current object, and retract the
agent to standing position.
The simulation environment is used to demonstrate the

agent’s understanding of learned behavior, by enacting new
behaviors over a set of virtual objects. Scenes generated by
VoxSim will be used to evaluate performance of the system,
as discussed later.

Simplified Simulator For the updating loops in our rein-
forcement learning algorithm, we want to simulate obser-
vational data similar to the real captured data faster than
real-time for effective computation. As a real-time, graph-
ics heavy simulator, VoxSim is not feasible for this portion
of the task. We are aware of a few other physical simula-
tion environments such as Gazebo1, but as we do not focus
on physical constraints in this study, so we implemented our
own simplified simulator in Python.

1http://gazebosim.org/
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Figure 2: An event “Move A around B” projected into sim-
ulator. A is projected as a red square, B as a green square

Our set of learnable actions is limited to ones that can
be easily approximated in 2D space. 3D captured data is
transformed into simplified simulator space by projecting it
onto a 2D plane defined by the surface of the table used for
performing the captured interaction. Our 2D simulator has
the following features:

• Each object is represented as a polygon (or square), with
a transform object that stores its position, rotation, and
scale.

• The space is constrained so objects do not overlap.
• Speed can be specified so that object movement can be

recorded as a sequence of feature vectors interpolated
from frame to frame.

Qualitative Spatial Reasoning

Qualitative spatial reasoning (QSR), a sub-field of quali-
tative reasoning, is considered to be formally akin to the
way humans understand geometry and space, due to the
cognitive advantages of conceptual neighborhood relations
and its ability to draw coarse inferences under uncertanity
(Freksa 1992). It is also considered a promising framework
in robotic planning (Cohn and Renz 2001). QSR allows
formalization of many qualitative concepts, such as near,
toward, in, around, and facilitates learning distinctions be-
tween them (Do and Pustejovsky 2017b). QSR has many
methods of accounting for relative vs. absolute relations,
such as allowing near to be thresholded relative to an exist-
ing reference point (Renz and Nebel 2007), which reinforces
the intuition that predicates such as near are inherently rel-
ative (Peters 2007). The use of qualitative predicates ensure
that scenes which are semantically close have very similar
feature descriptions. We use the following QSR types for
feature extraction.

• CARDINAL DIRECTION measures relations between two
objects as compass directions (north, northeast, etc.)

• MOVING or STATIC measures whether a point is moving
or not.

• QUALITATIVE DISTANCE CALCULUS discretizes the dis-
tance between two moving points, following (Yang and
Webb 2009).

• QUALITATIVE TRAJECTORY CALCULUS is a representa-
tion of motions between two objects by considering them
as two moving point objects (MPOs).

Figure 3: ECAT GUI showing performer interacting with
recognized and annotated objects.

Figure 4: LSTM network producing event progress function

Event Annotation Framework

We use an event capture and annotation tool developed in
our lab, ECAT (Do, Krishnaswamy, and Pustejovsky 2016),
which employs Microsoft Kinect� to capture performers in-
teracting with objects in a blocks world environment. Ob-
jects are tracked using markers fixed to their sides. They are
then projected into three dimensional space using Depth of
Field (DoF). Performers are also tracked using the Kinect�
API, which provides three dimensional inputs of their joint
points (e.g., wrist, palm, shoulder).

Learning Framework

Sequential Learning In this study, we consider a ver-
sion of Long-short term memory (LSTM) (Hochreiter and
Schmidhuber 1997) that processes sequential inputs to a se-
quence of output signals. LSTM has found utility in a range
of problems involving sequential learning, such as speech
and gesture recognition. Inputs are the feature vectors taken
from action captures or from the simplified simulator and
output is a function that corresponds to the progress of an
event. In particular, we create a function that takes a se-
quence S of feature vectors, current frame i and action e:
f(S, i, e) = 0 ≤ qi ≤ 1

The training set of sequential captured data is passed
through an LSTM network, which is fitted to predict a linear
progressing function. At the start or outside of an event span,
the network produces 0, whereas at the end, it produces 1.

Reinforcement Learning The objective of the embod-
ied agent is to generate a sequence of actions to attain a
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maximum reward, whereas our reward corresponds to how
closely the produced object movement resembles movement
of objects in the training data. Visual (tracked) information
is used to evaluate performance of the system.

Currently, the action space is continuous. Therefore, plan-
ning is carried out by selecting the action at step k (uk)
based on the current state of the system (Xk ∈ Rn). A
stochastic planning step is parameterized by policy parame-
ters θ : uk ∼ πθ(uk|xk).

This type of parameterized reinforcement learning poli-
cies is best solved by using policy gradients (Gullapalli
1990; Peters and Schaal 2008). Here, we use the REIN-
FORCE algorithm (Williams 1992), for its effectiveness in
policy gradient learning.

We consider two versions of REINFORCE, which carry
out planning in continuous and discrete search spaces, re-
spectively. For continuous space, we propose using a Gaus-
sian distribution policy πθ(u|x) = Gaussian(μ, σ). For
simplicity, the dimensions of μ and σ are the same as the de-
grees of freedom in our simplified simulator (2 dimensions
for position and 1 dimension for rotation). An artificial neu-
ral network (ANN) will be used to produce values μ and σ.
The set of weights in our ANN is the parameter θ from the
REINFORCE algorithm, learned with gradient descent.

For discrete space, we again use a qualitative reasoning
method. Specifically, the searching space for the transform
of the target location could be separated into two spaces, for
(X,Y ) coordinates and rotation r. The searching space for
(X,Y ) could be discretized according to cardinal direction
and quantized distance.

A searching method employing simple random search
with back-up is used as baseline to evaluate performance
of the progress learner. We will present some preliminary
results from this searching method.

Experiments

Here we describe our experimental setup and evaluation
plans.

Experiment

We aim to use the learning framework outlined above for
teaching an agent to perform a set of actions where it in-
teracts directly with a single object while the other objects
stay relatively static and the interaction takes place over a
continuous span.

1. An agent moves {object A} closer to {object B}
2. An agent moves {object A} away from {object B}
3. An agent moves {object A} past {object B}
4. An agent moves {object A} next to {object B}
5. An agent moves {object A} around {object B}

This set of actions differ only in their prepositional ad-
juncts, which describe different motion trajectories. Thus
for this experiment, the learning problem is reduced to one
of motion paths.

These actions are, however, generally classified into dif-
ferent event types. Using the treatment from (Pustejovsky

Figure 5: Visualizer implemented in Unity

1991), an action such as “moves {object A} next to {object
B}” is an achievement, which means it has a logical culmi-
nation or duration. Other actions do not have a defined end-
ing, though for “moves {object A} closer to {object B},”
this action is ended at the point when “{object A} is next
to {object B}.” From a cognitive point of view, recognition
of these action types, except possibly for move next to, re-
quires consideration of the trajectory as well as the start and
ending points of the objects involved. For example, closer to
conceptually involves change of distance between the start
and the ending position of the moving object relative to the
static object, but a complex motion path could lead to mis-
interpretation of the action. Closer to, therefore, strongly
indicates a trajectory of the moving object toward the static
object.

By grouping the learning of different event types together,
we aim to examine the capability of a single learning frame-
work that to learn multiple event types. The reason is rather
obvious: we, as humans, can learn all of these actions with-
out prior knowledge of different action types.

For each action type, we are capturing 40 sessions of two
different performers. Block positions are randomized at the
start. We mark the beginning and end of the captured action
and give it a textual description.

We generate frame-by-frame feature vectors by employ-
ing the set of aforementioned QSR features: cardinal direc-
tion and qualitative distance between objects’ positions and
frame-to-frame difference; qualitative trajectory for each
object and frame-to-frame difference. These features are
used only for the sequential model to predict event progress,
whereas we use objects’ parameters (positions and rotations)
across consecutive frames as state of the system Xk.

Evaluation

Human evaluation will be carried out on action demonstra-
tions generated by both the 2D simulator and our lab’s 3D vi-
sualizer, VoxSim (Figure 5). In VoxSim, we create a testbed
scene with blocks on a table, similar to the setup used in
video captures. For each randomized configuration of ob-
jects (block positions and rotations), we command the vir-
tual agent to perform one of the actions, and the scene is
recorded for evaluators to judge its performance.

Our human-driven evaluation method aims to help answer
the following questions:

1. Does the virtual agent learn the concept in question? Re-
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Figure 6: A correct demonstration of “Move red block
around green block.”

Figure 7: A wrong demonstration of “Move red block
around green block.” The value beneath each frame is value
predicted by the progress learner.

flected by average score given to a demonstration when
annotators know the action label.

2. Can the virtual agent make distinctions between learned
actions? Reflected by confusion matrix when annotators
have to label the action performed in a scene.

3. Will evaluation scores on the 2D simulator significantly
differ from those on the 3D visualizer?

4. Can we use the feedback from human evaluation to im-
prove the learned model? Generated demonstrations with
feedback scores complement real, captured data, and in
some sense are better than learning by demonstration, in
that they provide a rigorous way to include negative sam-
ples.

Evaluations of this type using VoxSim-generated scenes
have already been conducted in (Krishnaswamy 2017; Kr-
ishnaswamy and Pustejovsky 2017), using Amazon Me-
chanical Turk to crowdsource judgments. Human judgments
of a scene are given as “acceptable” or “unacceptable” rela-
tive to the event’s linguistic description.

Preliminary results

Preliminary runs of the system with brute-force searching
show that the progress learner can help to generate correct
demonstrations (Fig. 6), but sometimes produces deviations
(Fig. 7), probably because of the lack of negative training
samples. We hope that incorporating feedback from evalua-
tors will improve the overall performance of the learner.

We also provide a quantitative breakdown of a small-scale
human evaluation in Table 1. Two annotators (college stu-
dents) are asked to give scores from 0 to 10 and are also
asked to give comments on any video they graded between
3 and 7 (higher scores are considered better). Evaluator
Disparity is the average of the absolute values of the dif-
ferences between scores given by two annotators over the
demonstrations of a particular action.

Action Type Average Score Evaluator Disparity
Slide Closer 5.4 1.57
Slide Away 6.48 2.37
Slide Next To 5.55 1.7
Slide Past 6.38 1.9
Slide Around 2.75 1.03

Table 1: Evaluation

Evaluator comments provide some insight into bad
demonstrations. Typical comments on Slide Next To include
“Need to be even closer”, while on Slide Closer To a typical
comment is “The blocks touched.” That suggests some con-
fusion between these two actions, which requires a method
to help distinguish them. Three reasons are given by eval-
uators for low scores on Slide Around demonstrations: the
movement being not smooth, one or more additional steps
needed for completion, and many cases where the algorithm
does not generate the proper trajectory.

Code, experimental and evaluation results can be found
on GitHub2. Complete experimental results will be forth-
coming at that address.

Conclusion

Two different lines of research may be extended from this
framework. One involves a learning mechanism for more
complex actions, such as “make a row from given objects,”
and one involves learning the “manner of motion” of actions.

Learning complex actions from simpler actions requires
an additional semantic framework for objects and actions.
For example, to learn “make a row from given objects” given
observations of 2-unit and 3-unit rows, the learner needs to
be equipped with the concept of recursion, the concept of
a composite object made from elementary objects (e.g. the
size and shape of the composite object), and other abstract
concepts, such as object axis and extension of a structure
along said axis.

Learning the manner aspect of actions requires a finer-
grained treatment of object affordances. For example, for
the learner to distinguish “rolling a bottle” and “sliding a
bottle,” we need to equip it with a reasoning mechanism to
determine how an object’s pose and position dictate its af-
fordances. VoxML, the underlying platform to the VoxSim
system, supports modeling these types of affordance distinc-
tions, so reference to the VoxML semantics of objects and
events can provide the reasoner with the mechanism for dis-
tinguishing these behavior types, as illustrated by (Krish-
naswamy and Pustejovsky 2016).
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