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Abstract. Cultivating collaborative problem solving (CPS) skills in ed-
ucational settings is critical in preparing students for the workforce. Mon-
itoring and providing feedback to all groups is intractable for teachers in
traditional classrooms but is potentially scalable with an AI agent who
can observe and interact with groups. For this to be feasible, CPS moves
need to first be detected, a difficult task even in constrained environ-
ments. In this paper, we detect CPS facets in relatively unconstrained
contexts: an in-person group task where students freely move, interact,
and manipulate physical objects. This is the first work to classify CPS
in an unconstrained shared physical environment using multimodal fea-
tures. Further, this lays the groundwork for employing such a solution in
a classroom context, and establishes a foundation for integrating class-
room agents into classrooms to assist with group work.

Keywords: Collaborative Problem Solving · Multimodal · Natural Lan-
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1 Introduction
Working in teams is an essential skill in the workforce, which the education
system needs to prepare students for. Such practices have been formalized into
pedagogical techniques of collaborative problem solving (CPS) wherein students
learn by working together to achieve a shared goal. With CPS, peers can develop
a “positive interdependence” [8], but doing so depends on having an effective
group dynamic that does not fall into dysfunction. With proper facilitation, this
can be avoided, but this role usually falls to the teacher, and with a single teacher
and many small groups, such facilitation becomes intractable.

For some group-facilitation tasks, such as aligning group goals, an artificially
intelligent agent can be a useful tool to help teachers manage groups. A prereq-
uisite to agent interaction with a group is that the agent must be able to observe
the group and detect its state. Sun et al. [13] recently proposed a novel coding
scheme where each component of CPS could occur simultaneously, rather than
being treated as distinct phenomena (e.g., social or cognitive indicators). They
* These authors contributed equally to this work.
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define an alternative framework composed of three main facets: construction
of shared knowledge, negotiation/coordination, and maintaining team function,
which are defined by indicators (e.g., “proposes specific solutions”). In this work,
we adopt the Sun et al. framework from [13] and use it to annotate a novel
collaborative problem-solving task: the Weights Task (Section 2.1).

A number of works have trained machine learning models to detect CPS
in controlled, virtual environments [1, 12]. We extend these findings, showing
that CPS facets can still be automatically detected in in-person group work,
despite the increased complexity. Several works have explored what features are
important for detecting in-person CPS states [4, 5, 9], and we took inspiration
from these works in the design of our study. Our work presents a novel physical,
in-person shared task, and we utilized many of the recommended features to
establish our baseline on this data. 1

2 Methods
2.1 Data Collection
Weights Task We collected audiovisual data of small groups collaborating on
an in-person, shared, physically-grounded problem-solving task, known as the
Weights Task. An example still can be seen in Figure 1. In this task, triads are
given five colored cubes of different weights, a balance scale, and a worksheet
to track answers. We identify the weight of one block, and ask them to use the
balance scale to identify the weights of the remaining blocks. When participants
have identified the weights of all five blocks, we remove the balance scale and
provide a new block of unknown weight to participants. They must then try
to identify the weight of the mystery block. To successfully do this, they must
infer the pattern in the block weights. They have two attempts. We then ask
participants for the weight of a hypothetical next block in the sequence, according
to the pattern. They again have two attempts. Recording ends at the end of this
second attempt. A prior version of this task was described in [3] — our version
extends those methods in several ways to elicit more collaborative moves.

Thirty participants were recruited for this study. All participants were over
the age of 18, spoke fluent English, and were drawn from the student population
of Colorado State University. Participants were 20% female and 80% male. When
asked to identify their ethnicity, 60% of participants identified as Caucasian, 10%
identified as Hispanic or Latino, and 30% identified as Asian. Participants indi-
cated a range of native languages including English, Hindi, Assamese, Gujarati,
Bengali, Telugu, Persian, Malayalam, Urdu, and Spanish. The full dataset con-
sists of ten triads completing the Weights Task. Recordings average 16 minutes.
Audio recording used an MXL AC-404 Procon microphone as advised by find-
ings from [3]. Each audio recording was processed using Google’s Voice Activity
Detection (VAD) [11] to automatically segment audio files into utterances, with
only one speaker per segment. Next, we transcribe the segmented audio files
using Google’s automatic speech recognition (ASR). After preprocessing, there
were a total of 1,822 utterances, with an average length of 4.26 seconds.
1 Supplemental material can be found here: https://github.com/Blanchard-

lab/aied_2023_suppmat
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Fig. 1: The Weights Task

2.2 Annotations
Utterances from each group were annotated for collaborative problem solving
(CPS) in accordance with the CPS framework developed by Sun et al. [13].
Each utterance was annotated by two trained coders. Table 1 shows the average
number of occurrences of each facet per group.

Table 1: Descriptive statistics of all 1,822 utterances across all groups
Average SD Min Max

All utterances 182.20 80.51 90 380
# None 62.10 30.50 40 141
# Construction of shared knowledge 69.20 25.49 33 131
# Negotiation/Coordination 68.10 27.12 28 126
# Maintaining team function 37.10 23.59 9 73
Time (s) 4.26 2.84 0.84 23.64

2.3 Verbal Features
Verbal features comprised features corresponding to the words in each utterance
as transcribed by Google’s ASR. Each group’s utterance-level transcripts were
preprocessed for formatting (including removing newlines and periods and sur-
rounding the utterance with BERT’s required [CLS] and [SEP] tokens), and
then fed into the BERT Transformer model [6] to retrieve the sentence em-
bedding for each utterance. To expedite computation, we use the BERT-small
model first published in [14] and made available on the HuggingFace platform.
Therefore the embedding size is 512 dimensions.

2.4 Prosodic Features
Prosodic features here refers to the non-linguistic features of speech. Each group’s
audio files were processed using openSMILE to extract prosodic features of
speech — e.g., features relating to frequency, amplitude, and balance. We used
the extended feature set predefined by Eyben et al. [7]. This feature set aims
to be minimalist while still effective. After processing, each utterance has an
associated total of 88 prosodic features, such as loudness and spectral flux.
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2.5 Model Training
All models were trained and evaluated using leave-one-group-out cross-validation.
We trained and evaluated three types of models for evaluation: a random forest
(RF) and AdaBoost (AB) classifier where optimal hyperparameters were identi-
fied with Hyperopt’s [2] guided TPE search, and a neural network (NN) classifier
where hyperparameters were identified with a grid search.

3 Results

Table 2 shows the results of binary CPS facet classification with respective stan-
dard deviations given in Table 3. As discussed in our related works, binary classi-
fication (presence or absence of a CPS facet) is important since some utterances
may contain multiple collaborative components [13]. Area Under the Receiver
Operating Characteristic Curve (AUROC) was computed using test results from
every utterance.

Table 2: Weighted average AUROC for binary classification
Construction of Negotiation/ Maintaining
shared knowledge Coordination team function

Modalities RF AB NN RF AB NN RF AB NN
Verbal .814 .804 .829 .788 .783 .791 .712 .689 .678
Prosodic .832 .796 .714 .730 .710 .595 .661 .649 .598
Verbal + Prosodic .840 .818 .794 .785 .794 .760 .720 .699 .645

Table 3: Standard deviations of weighted average AUROC across all 10 groups
for binary classification

Construction of Negotiation/ Maintaining
shared knowledge Coordination team function

Modalities RF AB NN RF AB NN RF AB NN
Verbal .044 .037 .040 .054 .052 .057 .082 .079 .079
Prosodic .038 .051 .118 .055 .056 .094 .077 .074 .091
Verbal + Prosodic .035 .044 .143 .054 .052 .099 .076 .088 .095

4 Discussion

In many cases, we achieve results comparable to or even exceeding those reported
in [12], even though our shared environment and task are noisier and our data
size is smaller (30 participants compared to 111).

We often observe that performance with feature combinations does not sig-
nificantly exceed that with verbal (linguistic) features alone. In these cases, the
utterances or numerical representations thereof usually carry sufficient informa-
tion to classify or detect CPS facets most of the time.

4.1 Qualitative Error Analysis
In order to identify instances where multimodal features helped with CPS facet
detection, we examined 50 random samples where predictions by the random
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forest model were wrong using verbal features only and correct when using ver-
bal+prosodic. 32% of utterances required prosody to clarify intent (e.g., one
participant said “that’s 100” to indicate the team had done well, not to posit
that a block weighed 100 grams) — half of this set were instances of partici-
pants asking questions. 16% of the 50 sample utterances contained interruptions
(e.g., Participant 2: “So even when they’re equal it leans—”; Participant 1: “It
leans slowly that way”). For the remaining samples, it was not immediately clear
how the inclusion of prosodic information led to correct CPS identification, but
within this subset, we noted that 78.9% of utterances were correctly classified
by the prosodic classifier, indicating the prosodic signal alone was sufficient and
they did not benefit from the combination of verbal and prosodic features. Fi-
nally, we found 374 out of 1,822 (20%) utterances were misclassified by all models
— these utterances clearly require additional features or modalities.

5 Limitations, Future Work, and Conclusion

In this study, we have used several tools for automatic feature extraction and
trained multiple machine learning classifier models to detect collaborative prob-
lem solving (CPS) in small groups. We achieve promising results on multimodal
detection of CPS in a challenging in-person setting: a task that requires real-time
interaction with physical objects.

There are several limitations to this effort that future work could address.
While this is in line with other efforts, we are currently identifying CPS at the
facet-level (the most coarse-grained) and future work will need to identify CPS
at the sub-facet and indicator levels. While our participants exhibit a range of
ethnic, national, and linguistic backgrounds, all participants still tend to satisfy
most conditions of the WEIRD paradigm [10]. We are not utilizing any visual
features but the weights task itself is ripe to take advantage of body pose and
block interactions — some work on incorporating gesture was recently conducted
by [15]. We experiment with only one CPS task and it would behoove future
research to explore task-agnostic CPS classification. Our dataset is collected
outside of classrooms — classroom environments will inevitably be subject to
additional noise. Future work will need to consider how robust our solutions are
to classroom noise. Finally, the ultimate goal of this work is to create an AI
agent to assist small groups — this work is an important milestone, but much
remains to be done before an agent can actively interact with a group.
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