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Abstract

In this paper, we argue that simulation platforms enable a
novel type of embodied spatial reasoning, one facilitated by a
formal model of object and event semantics that renders the
continuous quantitative search space of an open-world, real-
time environment tractable. We provide examples for how
a semantically-informed AI system can exploit the precise,
numerical information provided by a game engine to per-
form qualitative reasoning about objects and events, facilitate
learning novel concepts from data, and communicate with
a human to improve its models and demonstrate its under-
standing. We argue that simulation environments, and game
engines in particular, bring together many different notions
of “simulation” and many different technologies to provide a
highly-effective platform for developing both AI systems and
tools to experiment in both machine and human intelligence.

Introduction

The concept of simulation has played an important role in
both AI and cognitive science for over 40 years. There are
two distinct uses for the term simulation, particularly as used
in computer science and AI. First, simulation can be used
as a description for testing a computational model. That is,
variables in a model are set and the model is run, such that
the consequences of all possible computable configurations
become known. Examples of such simulations include mod-
els of climate change, the tensile strength of materials, mod-
els of biological pathways, and so on. We refer to this as
computational simulation modeling, where the goal is to ar-
rive at the best model by using simulation techniques.

Simulation can also refer to an environment which al-
lows a user to interact with objects in a “virtual or simulated
world”, where the agent is embodied as a dynamic point-
of-view or avatar in a proxy situation. Such simulations are
used for training humans in scripted scenarios, such as flight
simulators, battle training, and of course, in video gaming:
in these contexts, the software and gaming world assume
an embodiment of the agent in the environment, either as
a first-person restricted POV (such as a first-person shooter
or RPG), or an omniscient movable embodied perspective
(e.g., real-time or turn-based strategy). We refer to such ap-

Copyright c� 2019, AAAI-2019 Workshop on Games and Simula-
tions for Artificial Intelligence. All rights reserved.

proaches as situated embodied simulations. The goal is to
simulate an agent within a situation.

Simulation has yet another meaning, however. Starting
with Craik (1943), we encounter the notion that agents carry
a mental model of external reality in their heads. Johnson-
Laird (1987) develops his own theory of a mental model,
which represents a situational possibility, capturing what
is common to all the different ways in which the situa-
tion may occur (Johnson-Laird and Byrne 2002). This is
used to drive inference and reasoning, both factual and
counterfactual. Simulation Theory, as developed in philos-
ophy of mind, has focused on the role that “mind reading”
plays in modeling the mental representations of other agents
and the content of their communicative acts (Gordon 1986;
Goldman 1989; Heal 1996; Goldman 2006). Simulation se-
mantics (as adopted within cognitive linguistics and prac-
ticed by Feldman (2010), Narayanan (2010), Bergen (2012),
and Evans (2013)) argues that language comprehension is
accomplished by means of such mind reading operations.
Similarly, within psychology, there is an established body
of work arguing for “mental simulations” of future or pos-
sible outcomes, as well as interpretations of perceptual in-
put (Graesser, Singer, and Trabasso 1994; Barsalou 1999;
Zwaan and Radvansky 1998; Zwaan and Pecher 2012).
These simulation approaches can be referred to as embodied
theories of mind. Their goal is to view the semantic interpre-
tation of an expression by means of a simulation, which is
either mental (a la Bergen and Evans) or interpreted graphs
such as Petri Nets (a la Narayanan and Feldman).

In this position paper, we introduce a simulation frame-
work, VoxWorld, that integrates the functionality and the
goals of all three approaches above. Namely, we situate
an embodied agent in a multimodal simulation, with mind-
reading interpretive capabilities, facilitated through assign-
ment and evaluation of object and context parameters within
the environment being modeled.

For example, relations created by events persist after the
completion of the event, and so in event simulation, they
must also persist in order for the simulation to be considered
accurate. Fig. 1 shows a number of objects at similar loca-
tions but in one case in orientations that, due to the effects of
physics, would be considered “unstable” after the comple-
tion of a placement event. Object knowledge about thinks
like shape of cup, top of plate, default position of banana



mean that human observers can judge the image on the left
to be unsatisfactory results of placement events and that on
the right to be more prototypical, due to the human ability to
simulate what the result of an event in a given environment
likely will be.

Figure 1: Objects in unnatural (L) and natural (R) positions

VoxWorld is based on the semantic scaffold provided
by the VoxML modeling language (Pustejovsky and Krish-
naswamy 2016), which provides a dynamic, interpretable
model of objects, events, and their properties. This allows
us to create visualized simulations of events and scenar-
ios that are rendered analogues to the “mental simulations”
discussed above. VoxSim (Krishnaswamy and Pustejovsky
2016a; 2016b) serves as the event simulator within which
these simulations are created and rendered in real time, serv-
ing as the computer’s method of visually presenting its in-
terpretation of a situation or event. Because modalities are
modes of presentation, a multimodal simulation entails as
many presentational modes as there are modalities being
modeled. The visual modality of presentation (as in embod-
ied gaming) necessitates “situatedness” of the agent, as do
the other perceptual modalities. Therefore, when we speak
of multimodal simulations, they are inherently situated. In
a human-computer interaction using such a simulation, the
simulation is a demonstration of the computational agent
“mind-reading” capabilities (an agent simulation). If the two
are the same (where the agent is a proxy for the player or
user, then the “mind-reading” is just a demonstration of the
scenario) If, on the other hand, the two are separate (agent
is not proxy for the user), then the simulation/demonstration
communicates the agent’s understanding of the user and the
interaction. In this case, this demonstration entails the illus-
tration of both epistemic and perceptual content of the agent.

We believe that simulation can play a crucial role in
human-computer communication; it creates a shared epis-
temic model of the environment inhabited by a human and
an artificial agent, and demonstrates the knowledge held by
the agent publicly. Demonstrating knowledge is needed to
ensure a shared understanding with its human interlocutor.
If an agent is able to receive information from a human and
interpret that relative to its current physical circumstances,
it can create an epistemic representation of that same infor-
mation. However, without a modality to express that rep-
resentation independently, the human is unable to verify or
query what the agent is perceiving or how that perception
is being interpreted. In a simulation environment the human
and computer share an epistemic space, and any modality of
communication that can be expressed within that space (e.g.,
linguistic, visual, gestural) enriches the number of ways that
a human and a computer can communicate within object and
situation-based tasks, such as those investigated by Hsiao

et al. (2008), Dzifcak et al. (2009), and Cangelosi (2010),
among others.

VoxWorld, and the accompanying simulation environ-
ment provided by VoxSim, includes the perceptual domain
of objects, properties, and events. In addition, propositional
content in the model is accessible to the simulation. Placing
even a simple scenario, such as a blocks world setup, in a
rendered 3D environment opens the search space to the all
the variation allowed by an open world, as objects will al-
most never be perfectly aligned to each other or to a grid,
with slight offsets in rotation caused by variations in inter-
polation, the frame rate, or effects of the platform’s physics.
Nevertheless, when the rendering is presented to a user, the
user can use their native visual faculty to quickly arrive at an
interpretation of what is being depicted.

Situational embodiment takes place in real time, so in the
case of a situation where there may be too many variables
to predict the state of the world at time t from a set of
initial conditions at time 0, situational embodiment within
the simulation allows the reasoning agent to reason forward
about a specific subset of consequences of actions that may
be taken at time t, given the agent’s current conditions and
surroundings. Situatedness and embodiment is required to
arrive at a complete, tractable interpretation given any ele-
ment of non-determinism. For example, an agent trying to
navigate a maze from start to finish could easily do so with
a map that provides them complete, or at least sufficient, in-
formation about the scenario. If, however, the scene includes
a disruptor (e.g., the floor crumbles, or doors open and shut
randomly), the agent would be unable to plot a course to the
goal. It would have to start moving, assess the current cir-
cumstances at every timestep, and choose the next move or
next set of n moves based on them. Situated embodiment al-
lows the agent to assess next move based on the current set
of relations between itself at the environment (e.g., ability
to move forward but not leftward at the current state). This
provides for reasoning that not only saves computational re-
sources but performs more analogously to human reasoning
than non-situated, non-embodied methods.

A Formal Interpretation of Simulations

Given the distinction above between interpretations for
“simulation,” we have been developing an approach that in-
tegrates all three: a situated embodied environment built on a
game engine platform. The computer, either as an embodied
agent distinct from the viewer, or as the totality of the ren-
dered environment itself, presents an interpretation (mind-
reading) of its internal model, down to specific parameter
values, which are often assigned for the purposes of testing
that model.

We assume that a simulation is a contextualized 3D virtual
realization of both the situational environment and the co-
situated agents, as well as the most salient content denoted
by communicative acts in discourse between them. Vox-
World and VoxML (Pustejovsky and Krishnaswamy 2016),
provide the following characteristics: object encoding with
rich semantic typing and action affordances; action encoding
as multimodal programs; it reveals the elements of the com-



mon ground in interaction between parties, be they humans
or artificially intelligent agents.

“Common ground” in a computational context relies on
implementations of the following:

1. Co-situatedness and co-perception of the agents, such that
they can interpret the same situation from their respective
frames of reference. This might be a human and an avatar
perceiving the same virtual scene from different perspec-
tives (see Fig. 3), or a combined virtual-physical scene
with the integration of computer vision technology; or a
human sharing the perspective of a robot as it navigates
through a disaster zone.

2. Co-attention of a shared situated reference, which allows
more expressiveness in referring to the environment (i.e.,
through language, gesture, visual presentation, etc.). The
human and avatar might be able to refer to objects on
the table in multiple modalities with a common model of
differences in perspective-relative references (e.g., “your
left, my right”); or the human sharing the robot’s perspec-
tive might be able to direct its motion using reference
in natural language (“go through the second door on the
left”) or gesture (“go this way,” with pointing).

3. Co-intent of a common goal, such that adversarial rela-
tionships between agents reflect a breakdown in the com-
mon ground. Here, the human and avatar in interaction
around a table might seek to collaborate to build a struc-
tural pattern known to one or both of them; or the hu-
man and robot sharing perspective both have a goal to
free someone trapped behind a door in a fire. The robot
informs the human about the situation and the human
helps the robot problem-solve in real time until the goal is
achieved.

The theory of common ground has a rich and diverse lit-
erature concerning what is shared or presupposed in human
communication (Clark and Brennan 1991; Gilbert 1992;
Stalnaker 2002; Asher 1998; Tomasello and Carpenter 2007;
Pustejovsky 2018).

VoxML (Visual Object Concept Markup Language) forms
the scaffold used to encode knowledge about objects, events,
attributes, and functions by linking lexemes to their visual
instantiations, termed the “visual object concept” or voxeme.
In parallel to a lexicon, a collection of voxemes is termed a
voxicon. There is no requirement on a voxicon to have a one-
to-one correspondence between its voxemes and the lexemes
in the associated lexicon, which often results in a many-to-
many correspondence. That is, the lexeme plate may be vi-
sualized as a [[SQUARE PLATE]], a [[ROUND PLATE]], or
other voxemes, and those voxemes in turn may be linked to
other lexemes such as dish or saucer.

Each voxeme is linked to either an object geometry, a pro-
gram in a dynamic semantics, an attribute set, or a transfor-
mation algorithm, which are all structures easily exploitable
in a rendered simulation platform.

An OBJECT voxeme’s semantic structure provides habi-
tats, which are situational contexts or environments con-
ditioning the object’s affordances, which may be either
“Gibsonian” affordances (Gibson, Reed, and Jones 1982)

or “Telic” affordances (Pustejovsky 1995; 2013). A habitat
specifies how an object typically occupies a space. When
we are challenged with computing the embedding space for
an event, the individual habitats associated with each partic-
ipant in the event will both define and delineate the space
required for the event to transpire. Affordances are used as
attached behaviors, which the object either facilitates by its
geometry (Gibsonian) or purposes for which it is intended
to be used (Telic). For example, a Gibsonian affordance for
[[CUP]] is “grasp,” while a Telic affordance is “drink from.”
This allows procedural reasoning to be associated with habi-
tats and affordances, executed in real time in the simulation,
inferring the complete set of spatial relations between ob-
jects at each frame and tracking changes in the shared con-
text between human and computer.

It also allows the system to reason about objects and ac-
tions independently. When simulating the objects alone, the
simulation presents how the objects change in the world. By
removing the objects and presenting only the actions that
the viewer would interpret as causing the intended object
motion (i.e., a pantomime of an embodied agent moving an
object without the object itself), the system can present a
“decoupled” interpretation of the action, for example, as an
animated gesture that traces the intended path of motion. By
composing the two, it demonstrates that particular instantia-
tion of the complete event. This allows an embodied situated
simulation approach to easily compose objects with actions
by directly interpreting at runtime how the two interact.

Reasoning within an Interpreted Simulation

VoxSim (Krishnaswamy and Pustejovsky 2016a; 2016b)
implements the VoxML platform in the Unity game engine
software by Unity Technologies1. The current implemen-
tation of VoxSim provides scenes in a Blocks World do-
main, augmented with a set of more complicated or interest-
ing everyday objects (e.g., cups, plates, books, etc.). There
are scenes without an avatar where the user can direct the
computer to manipulate objects in space (see Figs. 1 and
2) or with an avatar that can act upon objects and respond
to the user’s input where it is ambiguous (see Fig. 3). Vox-
World contains other software, models, and interfaces, e.g.,
to consume input from CNN-based gesture recognizers (Kr-
ishnaswamy et al. 2017), and to track and update the agent’s
epistemic state or knowledge about what the human inter-
locutor knows.

It is a straightforward process to create new scenes with
3D geometries with packaged code that handles the creates
and instantiation of voxemes, handles their interactions and
performs basic spatial reasoning over them. We also provide
a library of basic motion predicates and methods of compos-
ing them into more complex actions using VoxML.

Given the continuous tracking of object parameters such
as position and orientation, facilitated by a game engine or
simulation, and the knowledge of object, event, and func-
tional semantics facilitated by a formal model, an entity’s in-
terpretation at runtime can be computed in conjunction with
the other entities it is currently interacting with and their

1https://unity3d.com/



properties. One such canonical example would be placing
an object [[SPOON]] in an [[IN]] relation with another object
[[MUG]] (Fig. 2).

Figure 2: [[SPOON IN MUG]]

The mug has an intrinsic top, which is aligned with the
upward Y-axis of the world or embedding space (denoted
in VoxML as {align(Y, EY ), top(+Y )}). The mug is also
a concave object, and the mug’s geometry (the [[CUP]], ex-
cluding the handle) has reflectional symmetry across its in-
herent (object-relative) XY- and YZ-planes, and rotational
symmetry around its inherent Y-axis such that when the ob-
ject is situated in its inherent top habitat, its Y-axis is parallel
to the world’s. From this we can infer that the opening (e.g.,
access to the concavity) must be along the Y-axis. Encod-
ing the object’s concavity also allows fast computation for
physics and collisions using bounding boxes, while still fa-
cilitating reasoning over concave objects.

VoxSim performs reasoning over 3D variants of well-
known spatial calculi (e.g., Albath et al. albath2010rcc) and
interval/point calculi from libraries such as QSRLib (Gat-
soulis et al. 2016), computing axial overlap with the Sep-
arating Hyperplane Theorem (Schneider 2014). In order to
put object x in object y, while maintaining external contact
with y’s concave geometry, the placed object x must fit in-
side the concave object y. In the case of the mug, it can be
reasoned as shown that its concavity opens along the Y-axis,
so any computational reasoner must also determine that the
object to be placed within it can fit in that same orienta-
tion. In the case of a spoon, normally lying flat on a surface,
somewhere flush with the world’s XZ-plane, simply placing
it at the point where it would touch the bottom of the inside
of the mug would also cause it to interpenetrate the mug’s
sides inappropriately, and so the spoon must first be turned
(rotated) to align with the mug’s opening. The requirements
on simulating put the spoon in the mug enforce the resulting
state of this “turn” action as a precondition, which allows
for intelligent decision making typically not learnable from
a modality such as language or still images.

Deformation of the object is also possible, as long as it
maintains the object’s topological isomorphism. Just as indi-
vidual transformations over rigid object bounding boxes can
be tested for relation or event satisfaction in a given context,
transformations over individual vertices and edges can be
performed to search for the set of deformations that satisfy
a known constraint. For instance, the bounds of an object x
and a containing space y can be extracted at each frame as
deformations are performed over x such that a predicate like
as contains(extents(x), extents(y)) can be computed to
test the satisfaction condition of put(x, in(y)) where x is de-
formable. This allows us, within VoxSim, to solve for defor-
mations that describe events such as crumple or fold. Even

within the continuous open world of a game or simulation-
based environment, searching for transformations over indi-
viduals within a finite set of vertices and edges that satisfy
a predetermined condition keeps the search space tractable
well within computational limits and facilitates the gather-
ing of data for experiments that can teach an AI agent to
solve decidable problems such as “how to fold a cloth” or
“how to fit numerous items in a container.”

Search can be performed in an embodied, situated sim-
ulation environment through parameter setting of the type
found in computational simulation modeling. In order to
generate a visualization of an event, all variable parameters
must have values assigned, otherwise the program will fail
to run. This requirement on the game engine software also
becomes a requirement on the creation of a fully-defined
simulation model. The composition of objects and events
provide much of the needed information but in cases where
parameters still require values (e.g., the speed of a moving
object described simply by the predicate “slide”), we can use
Monte Carlo value assignment to set those values in the sim-
ulation environment. The rendered simulation including the
stochastically-assigned value(s) is presented as the system’s
interpretation of that situation being modeled formally.

We have performed a number of experiments in this area
using the VoxSim software (Krishnaswamy 2017). For a
set of motion predicates where various parameters are left
underspecified in the linguistic description (e.g., “slide the
block across the table” says nothing about speed or direction
of motion; “put the block next to book” or “touch the block
to the book” does not fully specify the relative placement of
the two objects in 3D space), we generated multiple simula-
tions of such events, captured them on video along with the
specific parameter values used in each simulation, and had
human evaluators choose the best simulation out of three for
one description, and the best description out of three for one
simulation. This allowed us generate a novel dataset of mo-
tion events and parameter values descriping prototypical in-
stances of them (according to evaluators), and such data can
be used to train a model that captures contextual depende-
cies for better simulation generation and interpretation.

Learning by Communication

One of the things that an embodied simulation model for AI
enables is peer-to-peer communication, specifically because
of the requirement that the AI agent have some kind of situ-
ated embodiment in which it interprets its environment. This
allows the creation of common ground between the human
and the AI that allows them to communicate (Pustejovsky et
al. 2017).

We use the example of learning to build a structure,
namely a staircase. In a series of user studies, we had naive
human subjects interact with an avatar (a screenshot of
VoxSim is given in Fig. 3) to build a staircase out of six
blocks. Due to subjects’ lack of skill using the system flu-
ently, the generated structures all satisfied the user’s notion
of a staircase, but across the 17 samples were often diverse
and noisy (variants included spaces between blocks, blocks
not properly aligned, or blocks rotated). Each of the 17 struc-



Figure 3: Screenshot of human-avatar interaction in VoxSim.
The purple circle indicates the location interpreted as the tar-
get of the human subject’s pointing.

Figure 4: Example user-constructed staircases

tures is defined by ⇡20 qualitative spatial relations, and each
set is stored as an unordered list.

The qualitative relation sets that defined each structure,
extracted directly from VoxSim via Unity, were then used
to train a model for the avatar to use to build its own novel
instance of a staircase structure. The avatar in the simula-
tion places a block then, using a 4-layer convolutional neu-
ral network, chooses one of its known examples to begin
approximating with the next step. Using a long short-term
memory network of 3 layers with 32 nodes each, and trained
up to 20 timesteps, the agent selects the most likely se-
quence of moves that would approximate the chosen exam-
ple structures. These moves are then pruned using heuris-
tic graph-matching and a move is chosen. Further details of
the method and sample results are given in (Krishnaswamy,
Friedman, and Pustejovsky 2019).

However, sometimes the agent generates a structure that
does not comport with an observer’s understanding of that
structure label. In previous experimentations using a simi-
lar framework for action learning (Do, Krishnaswamy, and
Pustejovsky 2018) we encountered difficulty in using nega-
tive examples to steer the learning agent away from incor-
rect generations (cf. also (Dietterich 2000; Nguyen, Yosin-
ski, and Clune 2015)). Here, the interaction within the simu-
lation environment facilitates “learning by communication”
that allows us to take a negative example and turn it into a
corresponding positive example, and storing both increases
the overall data size and gives a clear minimal pair between
a good example and a bad one.

A correction interaction might proceed as follows:

Figure 5: Example learned staircases

Figure 6: Correcting a generated structure with multimodal
communication.

1. The system generates the “staircase” in the top left image
shown in Fig. 6, which is one block off from a prototypical
staircase. This gets marked as an incorrect case.

2. The user points to the orange block at the top of the struc-
ture. The agent clarifies this request.

3. The user indicates the green block and gestures for (or
tells) the agent to move the orange block there.

4. The agent clarifies this request and makes the move. The
result is marked as a correct case.
This is demonstrated in the simulation environment. Be-

cause of the simulation acting in the service of multimodal
communication between a human and a computer, we can
improve the model (understanding) of the computer’s con-
cepts (here, a staircase) through learning by communication,
and iterative demonstration of the agent’s model.

Conclusion

Across different fields and in the existing AI, cognition, and
game development literature, there exist many different def-
initions of “simulation.” Nonetheless, we believe the com-
mon thread between them is that simulations as a framework
facilitate both qualitative and quantitative reasoning by pro-
viding quantitative data (for example, exact coordinates or
rotations) that can be easily converted into qualitative repre-
sentations. This makes simulation an effective platform for
both producing and learning from datasets.

When combined with formal encodings of object and
event semantics, at a level higher than treating objects as
collections of geometries, or events as sequences of mo-
tions or object relations, 3D environments provide a pow-
erful platform for exploring “computational embodied cog-
nition.” Recent developments in the AI field have shown that
common-sense understanding in a general domain requires
either orders of magnitude more training data than tradi-
tional deep learning models, or more easily decidable repre-
sentations, involving context, differences in perspective, and
grounded concepts, to name a few.

Technologies in use in the gaming industry are prov-
ing to be effective platforms on which to develop systems
that afford gathering both traditional data for deep learning
and representations of common sense, situated, or embodied
understanding. In addition, game engines perform a lot of
“heavy lifting,” providing APIs for UI and physics, among
others, which allows researchers to focus on implementing
truly novel functionality and develop tools for experimen-
tation in simulation-based and qualitative understanding of



both human and machine cognition and intelligence.
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