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Abstract. In this paper, we argue that, as HCI becomes more multi-
modal with the integration of gesture, gaze, posture, and other nonverbal
behavior, it is important to understand the role played by affordances
and their associated actions in human-object interactions (HOI), so as
to facilitate reasoning in HCI and HRI environments. We outline the re-
quirements and challenges involved in developing a multimodal semantics
for human-computer and human-robot interactions. Unlike unimodal in-
teractive agents (e.g., text-based chatbots or voice-based personal digital
assistants), multimodal HCI and HRI inherently require a notion of em-
bodiment, or an understanding of the agent’s placement within the en-
vironment and that of its interlocutor. We present a dynamic semantics
of the language, VoxML, to model human-computer, human-robot, and
human-human interactions by creating multimodal simulations of both
the communicative content and the agents’ common ground, and show
the utility of VoxML information that is reified within the environment
on computational understanding of objects for HOIL.

Keywords: Affordances - HCI - habitats - Common ground - multi-
modal dialogue - VoxML - Embodiment.

1 Introduction

In this paper, we argue that, as HCI becomes more multimodal with the integra-
tion of gesture, gaze, posture, and other nonverbal behavior [T21254TI53[77I89],
it is important to understand the role played by affordances and their associated
actions in human-object interactions (HOI), so as to facilitate reasoning in HCI
and HRI environments. We outline the requirements and challenges involved
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in developing a multimodal semantics for human-computer and human-robot
interactions. Unlike unimodal interactive agents (e.g., text-based chatbots or
voice-based personal digital assistants), multimodal HCI and HRI inherently re-
quire a notion of embodiment [2IT7I375383], or an understanding of the agent’s
placement within the environment and that of its interlocutor [24/47|7849I58].

As natural language technology becomes ever-present in everyday life, people
will expect artificial agents to understand language use as humans do, in a situ-
ated context. Nevertheless, most advanced neural Al systems fail at some types
of interactions that are trivial for humans. Certain problems in both human-
human communication and HCI cannot be solved without situated reasoning,
meaning they cannot be adequately addressed with ungrounded meaning repre-
sentation or cross-modal linking of instances alone. Examples include grounding
an object and then reasoning with it (“Pick up this box. Put it there.”), referring
to a previously-established concept or instance that was never explicitly intro-
duced into the dialogue, underspecification of deixis, and in general, dynamic
updating of context through perceptual, linguistic, action, or self-announcement
[1I[72]. Without both a representation framework and mechanism for grounding
references and inferences to the environment, such problems may well remain
out of reach for NLP.

This requires not only the robust recognition and generation of expressions
through multiple modalities (language, gesture, vision, action), but also the en-
coding of situated meaning: (a) the situated grounding of expressions in context;
(b) an interpretation of the expression contextualized to the dynamics of the
discourse; and (c) an appreciation of the actions and consequences associated
with objects in the environment. This in turn impacts how we computationally
model human-human communicative interactions, with particular relevance to
the shared understanding of affordances [28] and actions over objects.

All multimodal human-to-human communicative acts are inherently embod-
ied. Therefore, modeling similar capabilities with computational agents neces-
sitates a notion of “embodied HCI” (EHCI). Agents in this framework are em-
bodied and situated, which affords them the ability to affect the world they
inhabit (either real or virtual), but also requires them to have accurate and ro-
bust interpretive capabilities for multiple input modalities, which must run in
real time. In addition, an artificial agent must be able to communicate with
its human interlocutors using all communicative modalities humans may use,
including natural language, body language, gesture, demonstrated action, emo-
tional cues, etc. This paper describes the semantics of actions and object af-
fordances and the impact such knowledge has on embodied reasoning [72J45].
While the dynamic semantics of epistemic updating in discourse has been ex-
tensively modeled, there has been less development of integrated models of the
dynamics of actions and affordances in cooperative or goal-directed discourse.
We present a dynamic semantics of the language, VoxML [70], to model human-
computer, human-robot, and human-human interactions by creating multimodal
simulations of both the communicative content and the agents’ common ground
[AT9I85IRT], which is formalized in a data structure known as a common ground
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structure [71]. A multimodal simulation is an embodied 3D virtual realization of
both the situational environment and the co-situated agents, as well as the most
salient content denoted by communicative acts in a discourse. VoxML provides
a representation for the situated grounding of expressions between individuals
involved in a communicative exchange. It does this by encoding objects with rich
semantic typing and action affordances, and actions themselves as multimodal
programs, enabling contextually salient inferences and decisions in the environ-
ment. Underlying this model is a dedicated platform, VoxWorld [44], that is used
to create these 3D realizations and deploy embodied multimodal agents.

We believe that the major issues in HCI for situated reasoning involve the
multimodal grounding of expressions, as well as contextual reasoning with this
information. In particular, we address the question of how to encode the knowl-
edge associated with Human Object Interactions (HOI): how is object-specific
behavioral knowledge encoded in our everyday interactions with the entities we
encounter?

2 Modeling Human Object Interactions

When humans engage in conversation, the objects under discussion can range
from things and events present in their shared communicative space, to entities
and situations removed from the present context, and potentially even hypothet-
ical or irrealis in nature [30/50]. Because the focus here is on situated HCI and
HRI, we restrict the domain of discourse between the agents to those objects
and events that are either present or emergent in an environment shared by the
interlocutors. Even with such a seemingly limited context, the objects in a dia-
logue, either between two humans or between human and computer, carry much
more semantic information than conventionally assumed in planning research.
This includes knowledge for how the objects can be manipulated and used by
an agent in space and time, that is, their physical and functional affordances
[28165]. Such information also includes knowledge of how an object is situated in
the environment relative to an agent for specific purposes and actions, that is, its
habitat [6654]. These two parameters constitute a kind of teleological knowledge
[67], and in the discussion below, we describe this information and what role it
plays in both reasoning and communication for HCI.

There is currently a disconnect between semantic models that support lin-
guistic analysis and processing of narrative text, dialogue, and image captions,
and the interpretation and grounding that is actually required to fully under-
stand how an event is situated in a context. Some recent efforts have been made
to provide contextual grounding to linguistic expressions. For example, work
on “multimodal semantic grounding” within the natural language processing
and image processing communities has resulted in a number of large corpora
linking words or captions with images [13U55/93]. Here we argue that language
understanding and linking to abstract instances of concepts in other modalities
is insufficient; situated grounding entails knowledge of situation and contextual
entities beyond that provided by a multimodal linking approach (cf. [36]).
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Actual situated meaning is much
more involved than aligning captions
and bounding boxes in an image: e.g.,
[34] discuss the contribution of non-
linguistic events in situated discourse,
and also whether they can be the ar-
guments to discourse relations. Simi-
larly, it is acknowledged that gesture
is part of either the direct content of
the utterance [86] or cosuppositional

Figure 1: “Woman drinking coffee.” content [80]. Hence, we must assume

that natural interactions with com-

puters and robots have to account for interpreting and generating language and
gesture.

For example, consider the event depicted in Figure [II We assume that con-
ventional semantic composition results in a logical form such as that shown in
); for convenience, we will also employ a situated representation that takes
advantage of contextual Skolemization; that is, “a woman” will be denoted by
w, and “coffee” will be denoted by c.

(1) a. A woman drinks coffee.
b. Jz3y[woman(z) A cof fee(y) A drink(z,y)]
¢. drink(w,c)

Such representations need to be grounded, hence the recent interest in linking
text, and captions in particular, to image-based information (in the form of
annotated bounding boxes, etc). As useful as such cross-modal (image-caption)
linking can be for Question Answering tasks [BJ51], it does not provide sufficient
information to perform situated or embodied reasoning. That is, no true model of
the underlying human-object interaction can be extracted from such alignments.

Let’s examine just what kind of information would be necessary to have
regarding an event and its participants, so that novel inferencing and reasoning
can be performed. We begin by creating a verbose gloss or dense paraphrase for
the caption in Figure

(2) a. A woman drinking coffee.
b. A upright seated woman is holding in her hand, a cup filled with coffee
while she drinks it.
¢. The cup is upright so the container portion (inside) is able to hold coffee.
d. She is holding the cup by an attached handle.
e. The cup is tilted towards her and touches her partially open mouth, in
order to allow drinking.

Similarly, the caption for Figure[2]is perfectly adequate as a description of the
situation for a human to interpret. But for a computer to be able to understand
the caption by itself or indeed even with the image provided, there needs to be
an interpretation of how the human and the objects are interacting.
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A similar “unpacking” of the situa-
tion would involve a dense paraphrase
as shown below, where the seman-
tic and pragmatic presuppositions in
the caption are made explicit. As in
the previous example in Figure[1} this
spells out: the orientation and fac-
ing of the human to the object; touch
points (hot spots) on the object, e.g.,
keyboard; pose and embodied actions,
e.g., typing with both hands.

(3) a. A man working at a desk.
b. A upright man is seated in a
chair, typing with both hands on Figure 2: A man working at a desk.
the keyboard of a laptop, which is
on the top surface of a table.
c. The chair he is seated in is close enough to the table for him to reach the
keyboard.
d. The laptop is open, with the keyboard exposed flat and the screen facing
the man.
e. The man is facing the computer and the desk.

Where does this human-object interaction (HOI) information come from?
Ideally, it can be learned through multimodal alignment of image and caption
embeddings [92I3TI74I14], but this is still a difficult problem within the knowledge
acquisition community. Explicit representation has been disfavored in modern
Al but typical neural networks that learn implicit representations are treated as
passive recipients of data, with the question of context- and situation-sensitive
grounding treated as something of an inconvenience [16]. There is less attention
paid to letting the current state of the world, as opposed to reams of pre-existing
data, be “its own model”, per Brooks [9]. In the present work, we start with
an initial library of human-object interaction pairs, encoded as affordances in
their habitats (cf. next section), and then discuss experiments where such HOI
properties can be learned.

3 Modeling Habitats and Affordances

In everyday discourse, when referring to objects and events, humans expect each
other to know more than what a word refers to: e.g., a cup is an artifact, coffee
is a substance, and a toy is an inanimate object. Such categorical knowledge is
typically represented as a type structure, such as that shown in Figure [3] below.

Such typing is useful in linguistic interpretations so as to ensure that pred-
icates select the appropriate types of arguments in composition, as illustrated
in the semantic type derivation in , for the caption from Figure (I} “Woman
drinking coffee.”
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ENTITY
//\
MASS COUNT
/\ /\

SUBSTANCE AGGREGATE GROUP INDIVIDUAL
T [rice] \ T T
SOLID  LIQUID HUMAN GROUP ANIMATE INANIMATE
[sand] [water] [family] S [block]
[dirt] [coffee] HUMAN  ANIMAL [ball]

[woman]  [dog] [toy]
[teacher]  [cat]

Figure 3. Classical ENTITY subtyping

S:t
drink(w,c)
/\
DP VP:animate—t
Az[drink(z,c)]
/\
a_woman v DP
w : human
drink coffee

liquid—(animate—t) c: liquid
Aydz[drink(z,y)]

However, as the situated paraphrases from the previous section suggest, there
is information missing from conventional semantic representations for deeper
reasoning and inferencing about events and situations. In fact, we understand
an entire set of object attributes as well as a network of relations concerning how
the object appropriately participates in the situation under discussion. Many of
these involve human-object interactions (HOIs), and our knowledge of things
is predicated on are understanding of how to interact with them. Hence, just
as a cup will conventionally have an ontological relationship of a handle to the
whole structure, there is a conventional presupposition that the orientation of
the cup exposes the concavity of the interior to enable the functioning of the
cup. Notice that there are several things mentioned here that are partially spatial
and partially teleological. This is what we will call a teleotopological relationship
[68]. There are aspects of qualitative spatial reasoning that are implicated in this
relationship such as orientation of the concavity [26].

In order to create a compositional interpretation from a sentences such as
“the cup is on the table” and further “the coffee is in the cup,” we must likely
have some semantic encoding lexically associated with all these objects as well
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as compositionally for how they are physically and spatially configured relative
to each other.

Consider what some of the relevant parameters from this example are, that
may be tied to the way specific objects inhabit their situation. Assuming that
an object such as a cup, typed as a container is an asymmetric object, such as
a cylinder, it would appear that orientation information is critical for enabling
the use or function the object qua container. In fact, only when the cup’s orien-
tation facilitates containment can the function be “activated”, as it were. This
references two notions that are critical for reasoning about objects and HOI gen-
erally: we encode what the function associated with an object is (its affordance),
but just as critically, we also identify when it is active (its habitat).

Similarly, consider the implicit knowledge we seem to exploit for the way we
refer to and interact with an instrument such a spoon, knife, or fork. Each of
these can be considered a tool for eating. Each is asymmetric in form with a
handle, and “another” end that is associated with the function of eating, or a
subevent of eating. Hence when asked to pick up a spoon and start eating from
a bowl, we naturally grasp the handle and know where to put the spoon relative
to the bowl, etc. This is a simple but telling example of the myriad actions which
are afforded by and encoded with specific objects, in order to engage in specific
activities.

Figure 4: Top: Spoon in different habitats allowing holding (left) and stirring
(right). Bottom: Knife allowing spreading (left) and cutting (right).

In the images above, we see roughly the following condition-action pair:
(5) If Habitat then Action

For a spoon, we identify at least two functions, associated with distinct actions,
each of which is enabled by distinct habitats in Figure [4 Top:
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(6) a. If spoon’s concavity is vertical, then it can support containment of a sub-
stance;
b. If spoon’s major axis is vertical, then it can support mizing.

Similar remarks hold for the orientation of a knife, as illustrated above in Figure
(Bottom):

(7) a. If knife’s zero convexity (sheet) is horizontal, then it can support spreading
of a substance;
b. If knife’s zero convexity (sheet) is vertical, then it can support cutting or
separating.

Given the notion of affordance and how we interact with the objects in our
environment, we can refactor the classic entity type ontology from Figure [3]in
terms of how it is possible to interact with the objects in our environment. This
is shown, in part, below in the modal definition of objects as possible behaviors

in .

(8) Refactoring Entity Types as Modal Actions (Affordances)

<TOUCH>

T

<GRASP> <HOLD> <MOVE>

T

<ROLL> <PULL> <SLIDE> <PUSH> <THROW>

In the next section, we outline a language that captures much of the infor-
mation missing from conventional semantic models of events, as shown above:
in particular, information encoding object geometry, as well as event-participant
configuration and orientation constraints. This language, VoxML, encodes knowl-
edge about objects, their attributes, events, and functions to their visual and
spatial instantiations, called a “visual object concept”, or voreme.

4 VoxML

A significant part of any model for situated communication is an encoding of
the semantic type, functions, purposes, and uses introduced by the “objects un-
der discussion”. For example, a semantic model of perceived object teleology, as
introduced by Generative Lexicon (GL) with the Qualia Structure, for example
[65], as well as object affordances [28] is useful to help ground expression mean-
ing to speaker intent. As an illustration, consider first how such information is
encoded, and then exploited in reasoning. Knowledge of objects can be partially
contextualized through their qualia structure [69], where each Qualia role can be
seen as answering a specific question about the object it is bound to:
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(9) a. Formal: encoding taxonomic information about the lexical item (the 1S-A

relation);

b. Constitutive: encoding information on the parts and constitution of an
object (PART-OF or MADE-OF relation);

c. Telic: encoding information on purpose and function (the used-for or
FUNCTIONS-AS relation);

d. Agentive: encoding information about the origin of the object (the CREATED-
BY relation).

In human-human communication, objects under discussion (cf. [30]) can be par-
tially contextualized through their semantic type and their qualia structure: a
food item has a TELIC value of eat, an instrument for writing, a TELIC of write,
a cup, a TELIC of hold, and so forth. For example, the lexical semantics for the
noun chair in , assuming a Generative Lexicon encoding, carries a TELIC
value of sit_in, while the concept of letter carries a TELIC value of read and an
AGENTIVE value of write. Such object-based information will need to be recog-
nized by computational agents in HCI and HRI, as well, as it is so crucial for
situational reasoning is dialogue and discourse.

chair
AS - [ARGL - z:¢]

_ | F - phys(z)
Rl P Az, e[sitin(e, z,z)]

(10) Az

Notice that, while an artifact may be designed for a specific purpose, this purpose
can only be achieved under specific circumstances. To account for this context-
dependence, [66/71] enrich the lexical semantics of words denoting artifacts (the
TELIC role specifically) by introducing the notion of an object’s habitat, which
encodes these circumstances. For example, an object, x, within the appropriate
habitat (or context) C, performing the action 7 will result in the intended or
desired resulting state, R, i.e., C - [7]R. That is, if the habitat C (a set of
contextual factors) is satisfied, then every time the activity of 7 is performed,
the resulting state R will occur. It is necessary to specify the precondition context
C, since this enables the local modality to be satisfied. An illustration of what
the resulting knowledge structure for the habitat of a chair is shown in the QS
entry below.

chair

F - [phys(z),on(z,y1),in(z, y2), orient(x, up)]
(11) ACAz| ¢ _ Eseat(xl),back(xlg),legs(xi,),clear(wl)]

T - A2Xe[C — [sit(e, z,2) | Rsit(x)]

A = [made(e’,w,z

The habitat for an object is built by first placing it within an embedding space
and then contextualizing it. For example, in order to use a table, the top has to
be oriented upward, the surface must be accessible, and so on. A chair must also
be oriented up, the seat must be free and accessible, it must be able to support
the user, etc., [21123].
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The notion of habitat described above and the attached behaviors that are
associated with an object are further developed in [70], where an explicit connec-
tion to Gibson’s ecological psychology is made [29], along with a direct encoding
of the affordance structure for the object [28]. The affordance structure available
to an agent, when presented with an object, is the set of actions that can be
performed with it. We refer to these as GIBSONIAN affordances, and they include
“grasp”, “move”, “hold”, “turn”, etc. This is to distinguish them from more
goal-directed, intentionally situated activities, what we call TELIC affordances.

Extending this notion, we define a habitat as a representation of an object
situated within a simulation, a partial minimal model [8I40J43]; in this sense,
it is a directed enhancement of the qualia structure. Multi-dimensional affor-
dances determine how habitats are deployed and how they modify or augment
the context, and compositional operations include procedural (simulation) and
operational (selection, specification, refinement) knowledge.

The language used to construct this simulation is called VoxML (Visual Ob-
ject Concept Modeling Language) [70]. VoxML is a modeling language for con-
structing 3D visualizations of concepts denoted by natural language expressions,
and is being used as the platform for creating multimodal semantic simulations in
the context of human-computer and human-robot communication [44]. It adopts
the basic semantic typing for objects and properties from Generative Lexicon
and the dynamic interpretation of event structure developed in [73], along with
a continuation-based dynamic interpretation for both sentence and discourse
composition [GI5122].

VoxML forms the scaffolding we use to encode knowledge about objects,
events, attributes, and functions by linking lexemes to their visual instantiations,
termed the “visual object concept” or vozreme.

Entities modeled in VoxML can be OBJECTS, programs, or logical types.
OBJECTS are logical constants; PROGRAMS are n-ary predicates that can take
objects or other evaluated predicates as arguments; logical types can be divided
into ATRIBUTES, RELATIONS, and FUNCTIONS, all predicates which take OBJECTS
as arguments. ATTRIBUTES and RELATIONS evaluate to states, and FUNCTIONS
evaluate to geometric regions. These entities can then compose into visualiza-
tions of natural language concepts and expressions. For example, the attributes
associated with objects such as cup, chair, and block, include the following:

LEX OBJECT’s lexical information
TYPE OBJECT’s geometrical typing
HABITAT OBJECT’s habitat for actions

AFFORD_STR |OBJECT’s affordance structure
EMBODIMENT|OBJECT’s agent-relative embodiment
The LEX attribute contains the subcomponents PRED, the predicate lexeme
denoting the object, and TYPE, the object’s type according to Generative Lexi-
con.

Voxemes representing humans or IVAs are lexically typed as agents, but arti-
ficial agents, due to their embodiments, ultimately inherit from physical objects
and so fall under objects in the taxonomy. In parallel to a lexicon, a collection
of voxemes is termed a voxicon. There is no requirement on a voxicon to have a
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one-to-one correspondence between its voxemes and the lexemes in the associ-
ated lexicon, which often results in a many-to-many correspondence. That is, the
lexeme plate may be visualized as a [[SQUARE PLATEHEL a [[ROUND PLATE]], or
other voxemes, and those voxemes in turn may be linked to other lexemes such
as dish or saucer. Each voxeme is linked to either an object geometry, a program
in a dynamic semantics, an attribute set, or a transformation algorithm, which
are all structures easily exploitable in a rendered simulation platform.

An OBJECT’s voxeme structure provides habitats, which are situational con-
texts or environments conditioning the object’s affordances, which may be either
“Gibsonian” affordances [28] or “Telic” affordances [6566]. A habitat specifies
how an object typically occupies a space. When we are challenged with comput-
ing the embedding space for an event, the individual habitats associated with
each participant in the event will both define and delineate the space required
for the event to transpire. Affordances are used as attached behaviors, which the
object either facilitates by its geometry (Gibsonian) or purposes for which it is
intended to be used (Telic). For example, a Gibsonian affordance for [[cuP]] is
“grasp,” while a Telic affordance is “drink from.” This allows procedural rea-
soning to be associated with habitats and affordances, executed in real time in
the simulation, inferring the complete set of spatial relations between objects
at each frame and tracking changes in the shared context between human and
computer.

For example, the object geometry for the concept [[CUP]], along with the
constraints on symmetry, is illustrated below.

cup
HEAD - cylindroid[1]

(12) COMPONENTS = surgace, interior
TYPE - | CONCAVITY - concave

ROTATIONAL_SYMMETRY - {Y}
REFLECTION_SYMMETRY - {XY,Y Z}

Consider now the various habitats identified with [[cuP]].

cup

I CONSTR - {Y > XY > Z}
13 NTRINSIC = 2]l UP = align(Y,Ey)
(13) | naprrar - TOP - top(+Y)

EXTRINSIC = (31 UP - align(Y,&.y) ]

Finally, given these habitats, we can identify the associated behaviors that are
enabled (afforded) in such situations:

cup

14 As T HZ Dt (0 Jeontamm(U1] )

() arrson - | e = e = e [
Ay - H[s] = [roll(z,[1])]R

3Beginning in [42], voxemes have been denoted [[VOXEME]].
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Figure 5: Cup in different habitats allowing sliding and holding (left) and rolling
(right).

Indeed, object properties and the events they facilitate are a primary com-
ponent of situational context. In Fig. we understand that the cup in the
orientation shown can be rolled by a human. Were it not in this orientation, it
might be able to be only slid across its supporting surface (cf. ) This voxeme
for [[cuP]] gives the object appropriate lexical predicate and typing (a cup is a
PHYSICAL OBJECT and an ARTIFACT). It denotes that the cup is roughly cylindri-
cal and concave, has a surface and an interior, is symmetrical around the Y-axis
and across associated planes (VoxML adopts 3D graphics conventions, where
the Y-axis is vertical), and is smaller than and movable by the artificial agent.
The remainder of VoxML typing structure is devoted to habitat and affordance
structures, which we discuss below.

(15) Objects encoding semantic type, habitat, and affordances:
- cup .
PREDICATE - cu
LEXICAL - [TYPE = physob‘]P . artifact]
HEAD - cylindroidp]
COMPONENTS - surface, interior
TYPE - | CONCAVITY - concave

ROTATIONAL_SYMMETRY - {Y'}

REFLECTION_SYMMETRY - {XY,Y Z}
CONSTR - {Y > XY > Z}

UP - align(Y,&y)

TOP - top(+Y")

| EXTRINSIC = (31] UP - align(Y,&.v) |

Ay - Hpay — [put(z,on([1])))support([1],)

Ay - Hppy - [put(z,in([1]))]contain([1],x)

As - Hpo) = [grasp(z, [1])]hold(z, [1])

A4 = H[3] g [T’Oll(ZC, [1])]R

SCALE - <agent ]

INTRINSIC = [2]
HABITAT

AFF_STR =

MOVABLE - true

EMBOD =

respectively show the typing, habitat, and affordance structure of
[[cup]], which are brought together in the complete VoxML encoding in (I5)).
Bracketed numbers, (e.g., [1]) are reentrancy indices; terms annotated with the
same number refer to the same entitiy. For instance, in habitat 2 (Hpy)), the
intrinsic habitat where the cup has an upward orientation, if an agent puts some
x inside the cup’s cylindroid geometry ([1]), the cup contains x.

Now let us consider how this model informs the interactions available to agent
in a simple environment of a child playing with blocks, as shown in Figure [f]
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“h Yol

Figure 6: Girl stacking blocks.

Each of these blocks encodes the specific set of affordances associated with its
class: namely, given the appropriate habitat, they can be grasped, and then
moved (picked up, slid, pushed, puled, thrown, but not rolled!). In the current
situation depicted in this image, however, only the top-most blocks are immedi-
ately available for these affordances.

As we show in the next section, object properties associated with how an
agent can behave or interact with them can be the key towards classification
and discrimination of objects in an otherwise homogeneous environment.

5 Reasoning with Affordances

To demonstrate the information that object affordances and situated ground-
ing as encoded in VoxML provides, let us examine a simple object classifica-
tion example. Humans are efficient at seeking out experiences that are max-
imally informative about their environment [G2I596TI76I8T]. We explore the
physical world to practice skills, test hypotheses, learn object affordances, etc.
[1113213360/63J64184]. Young children, in particular, can rapidl generalize from
previous to new experiences with few or even no examples [I8/20/88].

Meanwhile, artificial neural networks require large numbers of samples to
train. A single cortical neuron may take 5-8 layers of artificial neurons to ap-
proximate [7]. Common few-, one-, or zero-shot learning approaches in Al provide
at best a rough simulacrum of human learning and generalization [39J62J94]. Re-
cent success in few-shot learning in end-to-end deep neural systems still requires
extensive pre-training and fine-tuning, often on special hardware [I0] or specific
task formulation [79).

In Al object identification is usually approached as a computer vision task
[46]. While convolutional neural nets, the most common method for object iden-
tification in modern computer vision, do appear to optimize for a form of in-
variance [35], and invariance is important for semantic interpretation [48], visual
input alone is only one part of how humans learn to identify objects [90].

To examine the different affordances of objects, an artificial agent can in-
teract with various objects and see how they behave differently under the same
circumstances. To test this, we trained a TD3 reinforcement learning policy [27]
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to learn to stack two cubes. We then used a successful cube-stacking policy to
make the agent attempt to stack other spheres, cylinders, and capsules (Fig-
ure on a block, forcing it to stack the other objects as if they were cubes. This
control structure allowed us to identify differences in the behaviors of the differ-
ent objects in the stacking task. Since these behaviors can be described in terms
like “cubes stack successfully,” “spheres roll off,” etc., they can be described in
terms of the object’s affordances.

Figure 7 Test objects.

As the agent executes the trained policy over the various objects, we gather
information about each stacking attempt from the VoxSim virtual environment.
At each timestep we store the type of the theme object, its rotation in radians
at episode start, radians between the world upright axis and the object upright
(+Y) axis, the numerical action executed, the object rotation and offset from
world upright after the action, the state observation after action completion,
the reward for the attempt, the cumulative total reward over the episode, and
the cumulative mean reward over the episode. At the end of the action, a small
“jitter” is applied to the object, to simulate the small force exerted on an object
when it is released from a grasp. We also store the vector representing the mag-
nitude and direction of this small force. This jitter force is applied perpendicular
to the major rotational axis of the theme object if one exists, or randomly if the
object is symmetric around all axes. Therefore, the jitter applied to cylinder or
capsule is applied perpendicularly to the object’s Y-axis, while the jitter applied
to a cube or sphere is random. Therefore the post-action jitter implicitly encodes
information about the objects’ habitats, while some other parameters gathered
implicitly encode affordances. Compare a subset of parameters extracted from
the environment from a single stacking attempt each with a cube and a sphere,
and two attempts with a cylinder (Table .

Object Jitter 0 after Action|Stack Height
cube [-1.472x107%[0]2.021x10°* 0.02238165 2
sphere [8.165x107° [0]-2.363x107° 2.134116 1
cylinder|0 0[2.5x107* 0.01457105 2
cylinder|0 0[2.5x107* 1.570793 1

Table 1: Observations gathered during stacking task with multiple objects.
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“Stack Height” indicates the number of stacked objects after the action was
complete. 2 indicates the object was stacked successfully, while 1 indicates that
it fell off when the action was complete, leaving only the bottom block in the
stack. “0 after Action” is the net angle (in radians) of the object space upright
(+Y) from the world space upright (+Y) axis. Values close to 0 indicate that
the object is upright while values near +7 indicate that the object is lying on
its side. A cube, which is flat on all sides, can rest stably at any multiple of
radians. In Table [I} we see that the stacking attempt with a cube results in a
stable stack (height 2) with the top object sitting upright. The sphere, which
rolls off, does not stack (height 1), and comes to rest at an arbitrary angle.

The cylinder shares properties with cubes (flat ends) and others with spheres
(round sides), and this behavior can be seen in the last two rows. In the second-
to-last row, the cylinder stacks successfully (height 2), and is resting upright
(0 ~ 0). In the sample shown in the last row, the stacking attempt was made with
the cylinder on its side (6 ~ 7). Since this places the cylinder’s round surface
in contact with its supporting surface, this habitat does not afford sustained
support, and the cylinder rolls off (indicated by the height value of 1). We can
also see that the direction of the jitter implicitly encodes the axis of symmetry
of the object, and therefore the habitat.

We use all the parameters gathered above to train a model that will predict
the object type from its behavior in the stacking task. We use a 1D convolutional
neural net for this task. Since episodes can be variable length (depending on
how successful the policy was at stacking the object in question), we pad out the
length of each input to 10 timesteps, copying the last sample out to the padding
length. Therefore an episode where the policy stacked the object successfully
on the first try will consist of 10 identical timestep representations, while an
episode where the agent tried and failed the stack the object 10 times will have 10
different timestep representations, so stackable objects like cubes and (upright)
cylinders will have more consistent representations across the 10 timestep sample
while less stackable objects will exhibit more variation across the 10 attempts.

The classifier consists of two convolutional layers (256 and 128 hidden units
respectively). The filter size in the first layer is ¢, a variable equal to the number
of parameters saved at each evaluation timestep during data gathering (¢ = 19
here) and a stride length of 8, and the second layer uses a filter size of 4 and a
stride length of 2. This allows the convolutions to generate feature maps in the
hidden layers that are approximately equal to the size of a single timestep sample,
and convolving over this approximates observing each timestep of the episode in
turn. The convolutional layers are followed by two 64-unit fully-connected layers
and a softmax layer. We train for 500 epochs using the Adam optimizer [38], a
batch size of 100 (= 10 episodes) and a learning rate of 0.001. Figure shows the
classification results over an unseen test set of 100 episodes worth of samples for
each object.

Not only can the objects be predicted from their behavior, meaning the
that affordances encode important information about object type, but the post-
action jitter features, that specifically encode the dependency between habitat
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Figure 8: 1D CNN behavioral features classifier results. First chart shows results
without the input of the implicit habitat and affordance information encoded in
the post-action jitter. Second chart shows results with those input features.

and affordance by virtue of the object’s axis of symmetry, increases classifier
performance by 28%, from 66.5% without the jitter features to 94.5%. Without
the jitter features, most confusions are between the objects that share very broad
stacking behavior: cube and cylinder (mostly stackable), and sphere and capsule
(mostly unstackable). Implicit information about affordances and habitats makes
the difference.

Of course, humans can readily tell that objects are different because they
look different. Sometimes interaction is not needed. Therefore we compare the
performance of the behavior-based classifier to a 2D CNN CIFAR-10 style object
detector. We crop and downsample all images to 84 x 84 pixels, and use 3 2D
convolutional layers with a filter size of 16, a 3 x 3 stride, and 2 x 2 average
pooling, followed by a 64-unit fully-connected layer before the softmax layer. We
train for 500 epochs using the Adam optimizer and a learning rate of 0.01, which
are the same learning hyperparameters as the behavior-based 1D CNN.

This classifier achieves a validation accuracy of 97.5%, but when evaluated
against an unseen test set of 140 novel images of the four object classes (35 images
each), accuracy falls below the behavior-based classifier, to 90.7% (Figure [9).

sphere

TFue label

cylinder

capsule

cube sphere cylinder capsule
Predicted label

Figure 9: 2D CNN visual classifier results.
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A look at the mistakes this classifier makes (Figure reveals why. If the
object is occluded, as in the top row, or distored due to perspective, the vision
classifier naturally fails often.

Figure 10: Sample of misrecognized objects. From left: cylinder misrecognized as
cube (1), and capsule (2), cylinder misrecognized as cube (3), sphere (4), and
capsule (5), and capsule misrecognized as sphere (6).

Therefore while we can see that some objects are clearly visually distinct, like
cube vs. sphere, other object classes are more difficult to distinguish visually.
To confirm this, we go inside the 2D CNN and draw out the 64-dimensional
embedding vectors from the final fully-connected layer. An embedding vector
represents what a sample input is transformed into in the interior of a neural
network after being multiplied by the optimized weight matrices in each layer
in turn, until it reaches the softmax layer. These can be used to quantitatively
assess the similarity of different input samples to each other. Figure shows
the cosine similarity of each of ther 140 test visual embeddings to each other
embedding.

1 ) 02
0 20 4 6 8 100 120

Figure 11: Cosine similarity matrix of visual embedding vectors from 2D CNN.

The red box indicates the cube embedding vectors, blue the sphere embed-
dings, purple the cylinder embeddings, and black the capsule embeddings. A
brighter color indicates more similarity. We can see that cube embeddings are
obviously most similar to each other, as are sphere embeddings, but when we
look at the cylinder and capsule embeddings, the similarities are much less ob-
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vious, and therefore the softmax layer of the networks makes its final prediction
will less confidence in those cases.

Cube and sphere are also the most distinct objects in the behavior-based clas-
sifier, and the habitat and affordance information appears to be critical to mak-
ing the more subtle and circumstantial distinctions in the behavior of cylinders
and capsule. These implicit semantics are what VoxML is designed to explicitly
encode.

We therefore propose that we can learn and populate VoxML encodings them-
selves through multiple inputs, such as interactive behavior, communication, and
qualitative spatial relation calculi (e.g., [BOI57U75]). For example, let A and B
be two objects. If the Y-coordinate of A’s position is above the Y-coordinate of
B’s position, and A and B are externally connected (touching), then it is likely
that B supports A or A is on top of B. This can be learnable though interaction
by learning a correlation between a embedding or vector representation of the
resultant state and a symbol that denotes that state, such as a classification
label, or ideally a word.

6 Conclusion and Future Directions

In this paper, we have outlined the requirements in developing a multimodal
semantics for human-computer and human-robot interactions. We presented a
model for how to encode, reason with, and learn object affordances in dynamic
human-object interactions (HOI). Being able to identify and then perform in-
ferencing from the modal possibilities inherent in the objects one encounters is
an essential component of any natural HCI or HRI system. We introduced the
language, VoxML, which provides a representation for the situated grounding of
expressions between individuals involved in a communicative exchange. By pro-
viding a rich semantic typing and encoding of action affordances for objects, and
for actions as multimodal programs, contextually salient inferences and decisions
are made available in the environment as the interaction unfolds.

One current line of research is to examine how this model can inform the in-
terpretation of student behavior in classroom interactions, as well as subsequent
development of curriculum for use in middle school education. This is part of re-
search conducted in the context of the NSF National AI Institute for Student-Al
Teaming (iSAT)ﬂ The goal is to imagine a range of increasingly sophisticated
“Al partners” that a teacher could have as an assistant in a classroom. One
particular task for this partner would be the interpretation of student behavior
and attention to the lesson at hand. This is a challenging problem for Al but
not for a seasoned teacher, since the latter can understand when a student is
engaged in on-topic behavior or when they are acting out.

Following developments within the area of embodied cognition [T5I83I91182],
it is interesting to see how this plays out. As a case in point, we have examined
extensive videos of classroom lessons from an urban public school, while they

*https://www.colorado.edu/today/ai-education


https://www.colorado.edu/today/ai-education

Multimodal Semantics for Affordances and Actions 19

are engaged in science immersion units. What is immediately clear is the need to
distinguish between actions that are associated with an “embodied solution” to
a task in the curriculum, from simply random actions performed off-topic. For
example, consider the task of determining the characteristics of a disk, from a
collection of objects. One way is to determine the relative height and diameter of
each object. However, another means is to test the objects through experienced
play, determining whether, for example, they can be thrown like a disk. In the
images below, we see a girl testing a roll of tape, which satisfies the embodied
action associated with a disk: it can be grasped, flicked and then released, and
it moves through the air. That is, the girl is answering the question through
actions on the object, using her body and reasoning from the consequences of
the actions. This is embodied cognition.

Figure 12: Roll of tape can be thrown like a disk: it can be both “flicked” between
thumb and fingers (left) and “released” (right).

This is an embodied cognitive solution utilizing the notion of affordances as
developed in this paper, and is, we believe, an interesting direction for further

research [4572).
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