
Robust Motion Recognition using Gesture Phase
Annotation

Hannah VanderHoeven[0000−0003−3234−6797], Nathaniel
Blanchard[0000−0002−2653−0873], and Nikhil Krishnaswamy[0000−0001−7878−7227]

Colorado State University, Fort Collins CO 80523, USA
{hannah.vanderhoeven,nathaniel.blanchard,nikhil.krishnaswamy}@colostate.edu

Abstract. Robust gesture recognition is key to multimodal language
understanding as well as human-computer interaction. While vision-based
approaches to gesture recognition rightly focus on detecting hand poses
in a single frame of video, there is less focus on recognizing the dis-
tinct “phases” of gesture as used in real interaction between humans
or between humans and computers. Following the semantics of gesture
originally outlined by Kendon, and elaborated by many such as McNeill
and Lascarides and Stone, we propose a method to automatically detect
the preparatory, “stroke,” and recovery phases of semantic gestures. This
method can be used to mitigate errors in automatic motion recognition,
such as when the hand pose of a gesture is formed before semantic con-
tent is intended to be communicated and in semi-automatically creating
or augmenting large gesture-speech alignment corpora.

Keywords: Gesture semantics · Gesture annotation · Gesture phases.

1 Introduction

A key requirement in modeling the behavior of humans in interaction with each
other and with intelligent agents is the ability to model and recognize gestures.
Not only is this crucial to creating multimodal corpora [16, 17], it is also a crit-
ical component of intelligent systems that communicate multimodally with hu-
mans [11–13]. The technical solution for most modern gesture recognition sys-
tems is some form of computer vision algorithm. As these are usually large neural
networks, successful vision systems depend on a sufficient volume of high-quality
training data.

In order to create effective training data for machine learning tasks, as well
as for robust modeling of human gestures, accurate annotation is necessary to
establish correct ground truth values. This often involves identifying the key
frames where the semantics of the gesture are expressed. For instance, a dif-
ficulty in automatic recognition may arise if an algorithm focuses only on in-
dividual frames, such as when a distinct hand pose is formed (e.g., a pointing
gesture) before the semantic denotatum of the gesture is intended to be com-
municated (cf. [10]). Therefore, correct identification of key frames helps reduce
noise and aids accurate identification of gestures, but manually sifting through



2 H. VanderHoeven et al.

video data to identify when exactly a gesture of interest starts and stops can
be time-consuming and labor-intensive. In this paper, we propose an approach
to automatically identify the key phases of gestures to aid in semi-automatic
detection and annotation of gesture semantics. Following the gesture semantics
originally formulated by Kendon [8] and elaborated by McNeill [21] and Las-
carides and Stone [15], among others, we focus on automatic identification of
key frames that comprise the pre-stroke, stroke, and post-stroke phases of a ges-
ture unfolding across multiple frames. We present our methodology, qualitative
and quantitative outputs, and evaluate the utility of the entire pipeline on a
gesture recognition task, showing very promising results.

2 Related Work

2.1 History of Gesture Semantics

There is a wealth of foundational and theoretical work in gesture semantics that
informs our research. In this section, a small selection of key contributions in
this area follow.

Adam Kendon [8] pioneered an approach that models gestures as simple
schemas consisting of distinct sub-gestural phases. Of these, the stroke phase is
regarded as the content-bearing phase. David McNeill [20, 21] treated gesture
and speech as sharing “the same psychological structure” and “a computational
stage.” This position set the stage for interpretations of gesture to be modeled
using similar semantic structures as verbal language. McNeill’s formulation [19]
extends Kendon’s to include “preparation” and “retraction” phases.

According to Lascarides and Stone [14, 15], gesture is interpretable in the
direct visual context if and only if the denotation of its interpretation function
is also directly co-perceptible by both the gesture-making agent and said agent’s
interlocutor. An example of this would be the object intended to be denoted by
a deictic gesture; namely, the deixis is only fully interpretable when its pointing
“cone” [9] aligns with the object, while in the case of an iconic gesture (say,
holding thumb and forefinger together to indicate “smallness”), the directly-
perceptible visual denotatum is the gesture itself. However, in both cases, the
physical act of making the gesture involves a pause or hold on either side of the
stroke phase, along with the initial preparation and final retraction phases.

Lücking et al. [18] similarly adopt McNeill’s gesture phase scheme for a study
of deixis, which models a pointing cone that extends outward from the extended
digit. The intersection of the cone and the objects in the environment becomes
the region that contains the denotatum, but only during the stroke phase. This
makes automated detection of the stroke phase critical for intelligent systems
that model and interpret gesture.1

The work that most closely approaches ours is Gebre et al. [5], on automatic
stroke phase detection. But, where the authors approach detecting stroke phases

1 A similar formulation that models deictic precision decreasing with distance is
adopted by van der Sluis and Krahmer [25].



Robust Motion Recognition using Gesture Phase Annotation 3

as an end in itself, we utilize detection of holds along with sequence-based seg-
mentation techniques to implicitly segment stroke phases from other phases by
utilizing the aforementioned foundational semantic frameworks [8, 15, 19].

2.2 Real World Applications

Over time, gesture recognition has become an increasingly ubiquitous method
to facilitate humans interaction with computers. Multimodal interactive agents,
e.g., [13, 12, 11], can use gesture along side speech, but typically require gestures
to held still for a short period for the gesture recognition algorithm to achieve
the requisite confidence, which leads to lag.

Hand detection tools, such as MediaPipe, an open source library developed
by Google [27], can aid in gesture recognition by returning joint locations, or
landmarks, of detected hands on a frame-by-frame basis [27] that can be used
to train custom gesture recognition models with a wide range of applications.
In prior studies and HCI applications, these tools have proven to be an effective
foundation on which to develop custom models that classify generally static,
standalone gestures that are identifiable in a single frame. For example, using a
model trained to recognize a collection of simple gestures, a user can interact with
a graphical user interface hands-free [6]. Additionally, gesture recognition models
have been utilized as an effective simple solution to control various robotic sys-
tems [1]. In both of these examples, a dataset containing multiple static gestures
is used to develop a recognition model, allowing the user to change between vari-
ous gestures and commands in real time. However, in most studies the change in
motion of a hand between gestures is not important to the intended command—
once the user settles on a new gesture, the shape of the hand is static and
identifiable in a single frame. In this paper, we present a pipeline to recognize
gestures that extend across multiple frames, thus allowing more granularity in
the gestures that can be used to command a system, and allowing more intuitive
movements to represent a command from the user’s perspective (i.e., pinching
to zoom.)

Tools like MediaPipe can reduce the inherent ambiguity present in single
still images of a gesture, but a collection of frames may still contain redundant
information. Thus, we propose to filter out surplus information by identifying key
frames. The combined use of landmark detection and key frame identification
has enabled model success for other complex (non-gestural) movements [23].
Our model, driven by effective features for robust motion detection, both aids
recognition and, by smart segmentation, will cut down on time and effort that
researchers spend manually annotating video data.

3 Methodology

The pipeline presented in this paper aims to automatically identify the key
phases of gestures to aid in semi-automatic annotation of gesture semantics



4 H. VanderHoeven et al.

through identifying the sub-gestural phases. Specifically, we focus on the auto-
matic detection of “key frames,” which we define as frames comprising the union
of the pre-stroke, stroke, and post-stroke phases, where the most of the semanti-
cally significant movement takes place. Our pipeline consists of three stages that
aid in reducing noise and distilling videos down to these key frames, and we eval-
uate it over a collection of complex, multi-frame gestures in two datasets. Key
components of the pipeline include a classification model whose main purpose is
to recognize the general static shape of complex gestures when in a hold phase
(Section 3.3), a movement segmentation routine which aids in breaking down
a video into segments of similar movements (Section 3.4), and a phase markup
annotation which uses the classification model and the video segments in order
to identify and annotate the segments and frames that are in a “hold” phase,
and thus most semantically significant, or adjacent to the most semantically-
significant frames. Figure 1 shows an overview of the major components and
the order in which they work together. In this section we will walk step by step
through each piece of the pipeline and tools used in more detail.

Fig. 1. Complex gesture annotation pipeline

3.1 MediaPipe

Categorizing gestures inherently involves a focus on hand poses and movements.
This is key to the gesture semantics approaches discussed in Section 2.1, as
well as to computer vision approaches to gesture recognition [22]. Therefore,
extraction of features of hand location is critical. We use MediaPipe to return
joint locations, or landmarks, of detected hands on a frame-by-frame basis, which



Robust Motion Recognition using Gesture Phase Annotation 5

are used to help identify key frames. MediaPipe tracks hands using 21 landmarks
that consist of x, y, and z (relative depth) coordinates. It uses a two-stage
pipeline: 1) the palm is detected using the full input image, and a bounding box
is formed around the hand that marks its initial location; 2) more precise hand
landmarks (joint positions) are located and modeled based on the location of the
hand bounding box.. Fig. 2 shows the location of hand landmarks and indexes
returned by MediaPipe. This process is optimized by using the hand bounding
box from the previous frame to help track the bounding box in the next frame.
The entire input image is only used again if tracking confidence drops below a
defined threshold [27].

Google’s API includes a handful of user definable parameters that can be
configured when using MediaPipe. We use a few of these, including maximum
number of hands, minimum detection confidence, and minimum tracking confi-
dence. Maximum number of hands allows the user to define the number of hands
expected in the frames and defaults to 2. Minimum detection confidence, which
is on a scale of 0 to 1, allows the user to specify the confidence value required to
consider a hand detected, higher values require clearer images but also reduce
false positive values. In addition minimum tracking confidence, which is also on a
scale of 0 to 1, allows the user to specify the confidence level for tracking via the
previous frame’s data. A higher value leads to more robust tracking but could
cause latency issues if the entire input image is consistently used for tracking.
Both the detection and tracking confidence default to 0.5. For annotation, we
use different values, mentioned in Section 3.3.

Fig. 2. MediaPipe Hand Landmarks (reproduced from [27])

3.2 Datasets

Microgesture Dataset Microgestures are a category of small, subtle hand
gesture requiring less gross motion [26]. The overall goal of such gestures is to
reduce the fatigue of a user interacting with a system long-term. The “Microges-
ture dataset” is a collection of short single-gesture videos, focusing on a single



6 H. VanderHoeven et al.

hand. 49 gestures are included in this dataset, each unique and identifiable,
fitting into categories including: taps, rotations, move, snap, numbers, zoom,
open/close, and slide. Using 3 Microsoft Azure Kinect cameras positioned at 3
different angles, 72 videos were collected for each gesture, spanning 10 partici-
pants [7]. Each video consists of approximately 60-80 frames with different start
and end points for each gesture, thus making the data a good candidate to test
our phase detection solution.

Weights Task Dataset The Weights Task dataset provides data that can be
used to test our gesture phase segmentation pipeline on a more realistic scenario.
This dataset is a collection of audio-visual recordings data where triads perform
a task involving correctly identifying the weights of various colored blocks using
a balance scale. Unknown to the participants, the weights of the blocks follow
a specific pattern, and the task involves participants collaboratively uncovering
this pattern. This shared collaborative task involves multimodal communication
using speech, gesture, gaze, and action in context, making the identification
of key gesture semantics important for automated analysis. The dataset spans
10 groups of 3, and includes videos from 3 different camera angles [2]. The
videos include many potential gestures of interest, including pointing, grasping
and placing blocks on a scale, which are good candidates for automatic phase
segmentation and annotation. Because there are multiple hands in these videos,
there are processing issues that need to be overcome to make our solution more
robust, which we discuss further in Section 6.

3.3 Static Classification Model

The first step of our pipeline is a classifier that runs over individual frames to
identify frames where the hand appears in the shape identifiable as the gesture
of interest. In this section we outline the annotation method used to create data
for the classifier and the details of the classifier itself.

Annotation Some manual annotation is required to create a static classification
tool for any given complex gesture. In order to create this data, we developed
an annotation script for the Microgesture and Weights Task datasets. Using
this script we step frame by frame through a sample video using OpenCV. For
any selected frame of the Microgesture data we save off the phase type, gesture
type, participant ID, and normalized landmarks returned from MediaPipe. For
the Weights Task dataset we include additional fields such as hand index and
group ID. Phase type can be one of two values: “hold,” which signifies a frame in
which the hand shape is similar to the shape of the gesture in any of the stroke
phases, and “no hold” which represents a noise shape (dissimilar from stroke)
that should be ignored. Gesture type maps directly to the index of the gesture
in the Microgesture dataset, and in the case of the Weights Task data can be
user-defined to map to a predefined gesture of interest. Figures 3 and 4 show
examples of annotated data from each of the datasets used in this paper.



Robust Motion Recognition using Gesture Phase Annotation 7

For annotation using the Microgesture dataset, we used the default tracking
and detection values for MediaPipe (cf. Section 3.1), and set the maximum
number of hands to 1. For the Weights Task data both tracking and detection
values were set to 0.6 with maximum hands set to 6, thus allowing us to annotate
any combination of hands returned from MediaPipe.

Fig. 3. Annotation examples from Microgesture dataset

Fig. 4. Annotation examples from Weights Task dataset

Classification Model To test our pipeline we experiment on a subset of ges-
tures from the Microgesture dataset and created a classification model for each.
To generate this subset we selected one gesture from a handful of the hierar-
chical categories of the Microgesture dataset [7]. We selected one gesture from
the following categories: move, snap, number, zoom, open/close. The categories
were with the intent to create a diverse selection of gestures across multiple cat-
egories. From here we selected one specific gesture from each category, including
two for number, index finger swipe right for move, hand close for open/close,
zoom out with palm for zoom and snap for snap. Because each gesture comes
from a different category, we expect each to be distantly identifiable using key
frames. Fig. 5 shows samples of each of the 5 gestures of interest selected for
evaluation.



8 H. VanderHoeven et al.

Fig. 5. Hold phase stills (from top left): zoom out with palm, hand close, snap, two,
and index finger swipe right

Using the annotated values for each frame in the sample data for each ges-
ture, we create a random forest binary classifier using the scikit-learn library for
each gesture of interest. A random forest classifier is made up of a collection of
independent decision-tree classifiers generated from a randomly selected subset
of training data. These classifiers then vote on the most probable classification
for any given input [3]. Random forest classifiers have been used in other Me-
diaPipe based classification projects (e.g., [4] and [24]). The overall purpose of
this model is to identify if a hand is in a “hold” phase or not. Table 1 shows the
accuracy metrics, Cohen’s Kappa, and AUROC values of each of the random
forest classifiers generated. The high values for all metrics on each gesture shows
that we can use landmarks to identify the general shape of the hold in a single
frame, however as mentioned before this is not enough to identify key frames
and additional processing is required.

Gesture Accuracy Balanced Accuracy Kappa AUROC

Two 0.92 0.93 0.92 0.92

Index finger swipe right 0.91 0.87 0.89 0.89

Hand close 0.87 0.78 0.84 0.82

Zoom out with palm 0.83 0.91 0.88 0.87

Snap 0.94 0.95 0.95 0.95

Table 1. Overall accuracy, balanced accuracy, Kappa, and AUROC. Gestures of in-
terest come from the Microgesture Dataset.

3.4 Movement Segmentation

Our pipeline’s second phase involves grouping similar individual frames into
like movements. For each frame, we compute a value representing the hand’s



Robust Motion Recognition using Gesture Phase Annotation 9

general location in the frame, representing the average (x, y) values in pixel space,
using the 21 landmarks returned from MediaPipe. Fig. 6 shows an example of
average hand location determined from the individual landmarks. Hereafter we
define a collection of frames with a difference in average location under a defined
threshold as a “segment.”

In order to generate segments for a video, we first cache off information for
each frame, including the video number, frame number, MediaPipe landmarks,
the normalized landmark values, and the average (x, y) location of the hand.
If the current frame’s average location is significantly different from the last
frame this marks the start of a new segment, otherwise the frame is added to
the current segment. The threshold value used in our experiments is 0.8 pixels,
however the most effective value for other scenarios or datasets may very and
thus the value is user-definable. Figs. 7 and 8 show a visualized example of these
steps on a subsection of zoom with palm frames.

Fig. 6. Example of average hand location, shown by the yellow dot.

Fig. 7. Movement Segmentation: cached frame values



10 H. VanderHoeven et al.

Fig. 8. Movement Segmentation: creating segments

3.5 Phase Breakdown

After the video has been broken down into segments, we analyze the segments
using our classification model to identify segments with a significant percentage
of frames in hold. For each segment in the video we run our static shape classifier
on each frame in the corresponding segment. If at least 80% of the frames are
in hold, we mark that entire segment in hold. During this process we look for
the following pattern: the first hold segment found marks the potential start of
the key frames interval, or a “section of interest.” After a hold is found, the
next “no hold” segment marks the end of the section of interest. The entire
detected section should span the pre-stroke, stroke and post-stroke phases. For
each section of interest found in a video, we also calculate the total frames. The
user can define the number of frames required to mark the section as significant
or key frames and thus as a candidate for automatic annotation. Fig. 9 shows a
visualized example of this grouping, continuing the example from the previous
section.

Once key frames are identified a few values are saved off that can then be
utilized to help extract key frames from a video subsequently to train additional
models to classify a collection of gestures in real time. These values include the
first and last frame of the key frame section, and the first and last frame of the
peak segment, also defined as the segment that contained the most frames. In
addition, the frame count for each segment can be plotted to show the pattern
of motion for any gesture of interest. It is worth noting that the pattern of peaks
and valleys on this chart can be used to map the occurrence of the stroke phase,
and for some gestures this could take place in or around the peak segment.
Figs. 10-12 show example plots of the distributions for each of the five gestures
examined. It is worth noting that for each gesture the start location and length
of the key frames vary, showing the importance of dynamic key frame selection.



Robust Motion Recognition using Gesture Phase Annotation 11

Fig. 9. Phase Breakdown: locating key frames

Selecting one static key frame location across all values in the dataset would lead
to noise in training inputs. The “peaks” shown in these charts indicate a section
of frames where motion was relatively small (that is, a high concentration of
similar frames), whereas valleys show locations where change in motion is more
significant.

Fig. 10. Key frame examples from zoom out with palm and hand close

4 Evaluation

Our major motivation in this paper has been to develop a way to automatically
pinpoint the exact locations of key frames for any given gesture. Success in this



12 H. VanderHoeven et al.

Fig. 11. Key frame examples from snap and two

Fig. 12. Key frame examples from index finger swipe right

aim means that automatically extracted key frames should be more informa-
tive of a gesture to a recognition system than a naive or random baseline. We
demonstrate our success on such a recognition task.

Our initial goal application was to train a classifier to recognize multi-frame
gestures across the entire Microgesture dataset using MediaPipe’s landmark
data. In an initial attempt, where all frames in each video were gathered and fed
into a simple classifier, the resulting accuracy that was equivalent to a random
guess. To reduce noise and trim down the number of frames being fed into our
classifier, we gathered 10 frames starting at the 20th frame for each video. This
resulted in performance very similar to the first attempt. Various additional at-
tempts were made to select a number of frames from the same static location
in each video that best fit the entire dataset. Through our experiments we were
able to improve accuracy slightly only to an accuracy of about 20%. This value
using naive or static key frame selection serves as a baseline. We hypothesize this
occurred because the true location of the key frames varied greatly for each ges-
ture, and no single starting position would be effective across the entire dataset.



Robust Motion Recognition using Gesture Phase Annotation 13

Selecting one static location across all videos leads to noise being mixed into the
training data. In order to improve accuracy key frames would need to be iden-
tified on a video by video basis, and our dynamic key frame selection method
serves as a possible solution.

To test our proposed solution we repeated our initial experiment on the Mi-
crogesture subset referenced in Section 3.3 (the gestures of interest include snap,
two, index finger swipe right, hand close, and zoom in with palm). Using both
the static and dynamic key frame collection methods, we trained a feedforward
neural network on this subset, using 2 ReLU-activated hidden layers of 20 and
10 units respectively with a final softmax classification layer. The model was
trained for 100 epochs with an Adam optimizer, a learning rate of 0.001 and
batch size of 16, using a leave one out split for each of the 10 participants. In
both cases we gathered 10 frames from each video.

5 Results and Discussion

Our results show an average of all 10 leave-one-out splits. Table 2 shows statis-
tics from both classifiers. Table 3 shows associated standard deviations across
all 10 splits for each figure. Our baseline values are much higher then the values
in our initial experiments that spanned the entire Microgesture dataset, as for
the subset selected, the static frame selection does better at selecting relevant
information. However our results show that when using dynamic key frame se-
lection, there is still a significant increase in overall performance. Figs. 13 and 14
show the performance of the classifier using both frame selection methods in the
form of confusion matrices (summed over all splits). It is evident from Fig. 14
that dynamic key frame selection does significantly better over all the gestures
of interest. Our experiments show that our pipeline and dynamic key frame se-
lection is a promising solution to reduce visual noise in a dataset by focusing on
segmenting gestures using semantically-informed key inflection points, thus im-
proving the performance of models tasked with identifying complex multi-frame
gestures.

Method Precision Recall F1 Top-1 Top-3

Static 35.28 39.16 33.86 41.48 83.49
Dynamic 66.35 66.48 62.78 69.10 89.10

Table 2. Average reported metrics: precision, recall, F1, and top-k accuracy. 10 frames
were gathered for both methods. Static collection started at frame 20 of each video.
Dynamic started at the unique key frame location for each individual video.



14 H. VanderHoeven et al.

Method Precision Recall F1 Top-1 Top-3

Static 23.99 20.36 21.97 21.16 9.78
Dynamic 22.80 19.00 22.00 18.28 9.86

Table 3. Standard deviation of reported metrics: precision, recall, F1, and top-k ac-
curacy.

Fig. 13. Classification results using static key frame selection

Fig. 14. Classification results using dynamic key frame selection



Robust Motion Recognition using Gesture Phase Annotation 15

Fig. 15. Weights Task, point detection

6 Conclusion and Future Work

In this paper we presented a pipeline and methodology for dynamic key frame
selection of gestures in video. Our method is informed by foundational work
on the semantics of gesture used to model the behavior of humans in multi-
modal communication, and our key frame selection method strongly correlates
to segmentation of the hold and stroke phases of a gesture. Our methodology
is expected to aid in the semi-automatic annotation of gesture, e.g., for the
purposes of augmenting gesture-speech corpora or correcting errors in gesture
recognition. We demonstrated the utility of our approach on a gesture classifi-
cation task, and demonstrated up to a 30% increase in classification accuracy
against a static frame selection baseline, even when the subset of gesture chosen
artificially elevated baseline performance.

While our pipeline shows promise in its ability to help identify the location of
key frames that increase the performance of complex gesture classifiers, there are
a few areas of potential future work. Our method relies on MediaPipe, which itself
has a few limitations that need to be overcome before our pipeline is a feasible
to aid in annotating video that contain multiple hands. While MediaPipe does
provide the ability to track multiple hands, it does not guarantee the order of the
returned hands. This means that in real-world situations with multiple hands
and participants, such as in the described Weights Task dataset (Section 3.2),
hands can get mixed up and lead to mislabeling in our annotations.

Our pipeline did show promise in being able to identify pointing gestures
in various subsections of videos, however the videos needed to be vetted first to
make sure the same hand was continuously tracked, whereas for the Microgesture
dataset we configured MediaPipe to only identify one hand. Fig. 15 shows the



16 H. VanderHoeven et al.

output of our segmentation pipeline over a subsection of one of the Weights
Task videos. The figure shows that our pipeline could detect deictic pointing
gestures (cf. the video stills in Fig. 4) in a group work scenario and return
meaningful output, however to make our solution more robust to this type of
dataset additional work needs to be done to consistently associate a hand with
a participant. One potential solution for this could involve rendering the Kinect
body locations on each frame, along with the MediaPipe output. That way the
wrist location of the body closest to a hand could be tracked to potentially make
hand tracking more consistent.

Finally, our experimental results, while demonstrating promise and also com-
putational efficiency by relying not on one large model but a series of small ones,
were presented only a subset of gestures from the Microgesture dataset. Our
pipeline needs to be evaluated over a full dataset, such as the entire Microges-
ture dataset or a more complex scenario, such as the Weights Task dataset.

Acknowledgements

This work was partially supported by the National Science Foundation under
awards CNS 2016714 and DRL 1559731 to Colorado State University. The views
expressed are those of the authors and do not reflect the official policy or position
of the U.S. Government. All errors and mistakes are, of course, the responsibili-
ties of the authors.

References

1. Allena, C.D., De Leon, R.C., Wong, Y.H.: Easy hand gesture control of a ros-car
using google mediapipe for surveillance use. In: HCI in Business, Government and
Organizations: 9th International Conference, HCIBGO 2022, Held as Part of the
24th HCI International Conference, HCII 2022, Virtual Event, June 26–July 1,
2022, Proceedings. pp. 247–260. Springer (2022)

2. Bradford, M., Khebour, I., Blanchard, N., Krishnaswamy, N.: Automatic detection
of collaborative states in small groups using multimodal features. In: International
Conference on Artificial Intelligence in Education (under review)

3. Breiman, L.: Bagging predictors. Machine learning 24, 123–140 (1996)
4. Bugarin, C.A.Q., Lopez, J.M.M., Pineda, S.G.M., Sambrano, M.F.C., Loresco,

P.J.M.: Machine vision-based fall detection system using mediapipe pose with
iot monitoring and alarm pp. 269–274 (2022). https://doi.org/10.1109/R10-
HTC54060.2022.9929527

5. Gebre, B.G., Wittenburg, P., Lenkiewicz, P.: Towards automatic gesture stroke
detection. In: LREC 2012: 8th international conference on language resources and
evaluation. pp. 231–235. European Language Resources Association (2012)

6. Indriani, M.H., Agoes, A.S.: Applying hand gesture recognition for user guide
application using mediapipe. 2nd International Seminar of Science and Applied
Technology (ISSAT 2021) p. 101–108 (2021)

7. Kandoi, C., Jung, C., Mannan, S., VanderHoeven, H., Meisman, Q., Krishnaswamy,
N., Blanchard, N.: Intentional microgesture recognition for extended human-
computer interaction. In: Human-Computer Interaction, HCI 2023, Held as Part
of the 25th HCI International Conference, HCII 2023. Springer (2023)



Robust Motion Recognition using Gesture Phase Annotation 17

8. Kendon, A., et al.: Gesticulation and speech: Two aspects of the process of utter-
ance. The relationship of verbal and nonverbal communication 25(1980), 207–227
(1980)

9. Kranstedt, A., Lücking, A., Pfeiffer, T., Rieser, H., Wachsmuth, I.: Deixis: How
to determine demonstrated objects using a pointing cone. In: Gesture in Human-
Computer Interaction and Simulation: 6th International Gesture Workshop, GW
2005, Berder Island, France, May 18-20, 2005, Revised Selected Papers 6. pp. 300–
311. Springer (2006)

10. Kranstedt, A., Wachsmuth, I.: Incremental generation of multimodal deixis re-
ferring to objects. In: Proceedings of the Tenth European Workshop on Natural
Language Generation (ENLG-05) (2005)

11. Krishnaswamy, N., Alalyani, N.: Embodied multimodal agents to bridge the un-
derstanding gap. In: Proceedings of the First Workshop on Bridging Human–
Computer Interaction and Natural Language Processing. pp. 41–46 (2021)

12. Krishnaswamy, N., Narayana, P., Bangar, R., Rim, K., Patil, D., McNeely-White,
D., Ruiz, J., Draper, B., Beveridge, R., Pustejovsky, J.: Diana’s world: A situated
multimodal interactive agent. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 13618–13619 (2020)

13. Krishnaswamy, N., Narayana, P., Wang, I., Rim, K., Bangar, R., Patil, D., Mulay,
G., Beveridge, R., Ruiz, J., Draper, B., et al.: Communicating and acting: Un-
derstanding gesture in simulation semantics. In: IWCS 2017—12th International
Conference on Computational Semantics—Short papers (2017)

14. Lascarides, A., Stone, M.: Formal semantics for iconic gesture. Universität Potsdam
(2006)

15. Lascarides, A., Stone, M.: A formal semantic analysis of gesture. Journal of Se-
mantics 26(4), 393–449 (2009)

16. Lücking, A., Bergman, K., Hahn, F., Kopp, S., Rieser, H.: Data-based analysis of
speech and gesture: The bielefeld speech and gesture alignment corpus (saga) and
its applications. Journal on Multimodal User Interfaces 7, 5–18 (2013)

17. Lücking, A., Bergmann, K., Hahn, F., Kopp, S., Rieser, H.: The bielefeld speech and
gesture alignment corpus (saga). In: LREC 2010 workshop: Multimodal corpora–
advances in capturing, coding and analyzing multimodality (2010)

18. Lücking, A., Pfeiffer, T., Rieser, H.: Pointing and reference reconsidered. Journal
of Pragmatics 77, 56–79 (2015)

19. McNeill, D.: Hand and mind. Advances in Visual Semiotics 351 (1992)
20. McNeill, D.: Language and gesture, vol. 2. Cambridge University Press (2000)
21. McNeill, D.: Gesture and thought. In: Gesture and Thought. University of Chicago

press (2008)
22. Narayana, P., Beveridge, R., Draper, B.A.: Gesture recognition: Focus on the

hands. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. pp. 5235–5244 (2018)

23. Roygaga, C., Patil, D., Boyle, M., Pickard, W., Reiser, R., Bharati, A., Blanchard,
N.: APE-V: Athlete Performance Evaluation using Video pp. 691–700 (2022)

24. Singh, A.K., Kumbhare, V.A., Arthi, K.: Real-Time Human Pose Detection and
Recognition Using MediaPipe pp. 145–154 (2022). https://doi.org/10.1007/978-
981-16-7088-6 12

25. van der Sluis, I., Krahmer, E.: Generating multimodal references. Discourse Pro-
cesses 44(3), 145–174 (2007)

26. Wolf, K., Naumann, A., Rohs, M., Müller, J.: A taxonomy of microinteractions:
Defining microgestures based on ergonomic and scenario-dependent requirements.



18 H. VanderHoeven et al.

In: 13th International Conference on Human-Computer Interaction (INTERACT).
pp. 559–575. No. Part I, Springer (2011)

27. Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.L.,
Grundmann, M.: Mediapipe hands: On-device real-time hand tracking. arXiv
preprint arXiv:2006.10214 (2020)


