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Abstract. Using both verbal and non-verbal modalities in generating
definite descriptions of objects and locations is a critical human capa-
bility in collaborative interactions. Despite recent advancements in AI,
embodied interactive virtual agents (IVAs) are not equipped to intelli-
gently mix modalities to communicate their intents as humans do, which
hamstrings naturalistic multimodal HCI. We introduce SCMRE, a cor-
pus designed for training generative AI systems in multimodal HCI, fo-
cusing on multimodal referring expressions. Our contributions include:
1) Developing an interactive virtual agent (IVA) platform that inter-
prets human multimodal instructions and responds with language and
gestures; 2) Providing 24 participants with 10 scenes, each involving ten
equally-sized blocks randomly placed on a table. These interactions gen-
erated a dataset of 10,408 samples; 3) Analyzing SCMRE, revealing that
the utilization of pointing significantly reduces the ambiguity of prompts
and increases the efficiency of IVA’s execution of humans’ prompts; 4)
Augmenting and synthesizing SCMRE, resulting in 22,159 samples to
generate more data for model training; 5) Using LLaMA 2-13B to con-
duct parameter-efficient finetuning for generating contextually-correct
and situationally-fluent multimodal referring expressions; 6) Integrating
the fine-tuned model into the IVA to evaluate the success of the genera-
tive model-enabled IVA in communication with humans; 7) Establishing
the evaluation process which applies to both humans and IVAs and com-
bines quantitative and qualitative metrics.

Keywords: Embodied agents · non-verbal behaviours · multimodality ·
referring expression generation

1 Introduction
As human-computer interaction (HCI) systems become more advanced and so-
phisticated, there is an increasing expectation for them to behave more like
humans in integrating modalities to communicate their intents. Humans fluently
communicate in various non-verbal modalities with verbal modalities, a capa-
bility that even advanced multimodal models are unable to achieve [34]. While
modern chatbots, powered by generative large language models (LLMs) such as
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OpenAI’s ChatGPT, have demonstrated remarkable abilities in generating co-
herent and context-relevant text, learning from and generating text alone fails
to demonstrate an understanding of the meaning that connects utterance to
communicative intent [6].

Agent embodiment provides a structure to demonstrate language understand-
ing in context [25]. If a particular mode of expression, such as language, is inad-
equately communicative, another mode, such as gesture, can be used to disam-
biguate intents and targets. AI advancements have developed language models,
e.g., GPT-4, that enable humans to interact with computers multimodally [34],
but to date embodied interactive virtual agents (IVAs) cannot typically intelli-
gently mix modalities to communicate their intents as humans do, which ham-
strings naturalistic multimodal HCI. Due to the fact that objects within a shared
situated context as anchors for establishing mutual understanding between in-
terlocutors, Multimodal Referring Expressions (MREs), leveraging information
about both object characteristics and locations, have emerged as a valuable case
study for understanding multimodal language use in context [26, 32].

In this paper, we present SCMRE, a Situated Corpus of Multimodal Refer-
ring Expressions, and leverage it to train and evaluate generative AI models
for embodied HCI. Our aim is advancing the development of IVAs capable of
utilizing non-verbal and verbal behavior bidirectionally and symmetrically in
interactions with humans. Our key contributions are:

– Developing an embodied IVA with the capability to interpret and respond
using language and gestures to collect MREs from humans.

– Collecting the SCMRE corpus via bidirectional and symmetrical human-IVA
interaction.

– Implementing a fine-tuned LLM for generating contextually correct and sit-
uationally fluent MREs.

– Applying quantitative and qualitative metrics to evaluate MRE generation
for both humans and the IVA.

2 Related Work

Recent advancements in embodied HCI indicate the potential for enabling human-
like interactions with users [14, 22]. Nonetheless, it is argued that HCI systems
lack of bidirectional and symmetrical recognition and generation of multimodal
communication mechanisms [50]. Therefore, IVAs, such as the Diana system [27,
28] built on then VoxWorld platform [29, 30] to support embodied HCI in rec-
ognizing both virtual and physical environments [50–52], enabling collaboration
with humans in task-based interactions. Embodiment plays a significant role in
representing and interpreting objects in a scene [53], in mutual understanding
[26], and in evaluating the outputs of interactive systems [1, 33]. This emphasizes
the importance of IVAs in not solely recognizing but also generating multimodal
communication, particularly in the domain of referring expressions (REs).
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Referring Expression Generation. Despite the significant contribution of deictic
gesture to the successful communication of intent, [17, 46], early RE genera-
tion research prioritized linguistic descriptions, including object properties [16,
63] and spatial references [12, 35, 43]. Non-verbal cues like deictic gesture were
more explored in RE comprehension [39, 54, 58]. Agent embodiment features were
rarely integrated into generation [23, 24], with most studies treating generation
and comprehension separately [13].

Multimodal Generative LLMs. Recent AI advances have led to the develop-
ment of multimodal foundation models (MFMs) for multimodal generation [68].
Multimodal transformers, such as CLIP [55], ViLBERT [41], VisualBERT [38],
SimVLM [67], BLIP-2 [37] and Flamingo [2], process inputs from various modal-
ities like text, images, and point clouds. Other models focus on processing video,
audio, or 3D data understanding [3, 19, 70]. These models are pre-trained on
large multimodal datasets containing images, audios and language.

Datasets. Various datasets contain human-generated descriptions of objects in
visual scenes, such as Bishop [18], Drawer [64], GRE3D3 [65], TUNA [16], RS-VS
[43], and other recent collections [35, 12]. Other datasets focus on verbal refer-
ences only [45, 10, 9], gestures only [57, 59, 60], or embodied multimodal referring
expressions comprehension [56, 32]. These multimodal expressions are generated
either by simulators, such as VoxSim [32], and CAESAR [21], or by humans
referring to images [57] or outdoor objects [8].

Metrics. Overlap in the properties of human and machine descriptions can been
computed according to Dice Coefficient [11], MASI [48], Levenshtein Distance
[36], BLEU [47], ROUGE [40], or METEOR [4]. Alternatively, human judges can
evaluate generated REs according to adequacy of reference or naturalness. While
adequacy is evaluated by object identification tasks [12, 13, 15, 35], naturalness
is evaluated by (1) metrics such as error rate, identification time, and reading
time [5] or (2) human ranking of generated references for objects in images or
videos [1, 12, 31, 35].

In this study, we developed an IVA to elicit MREs from humans in real-time
interaction, trained a MRE generative model focusing on gesture and language,
and evaluated how non-verbal strategies complement verbal strategies for situ-
ated HCI, both quantitatively and qualitatively.

3 SCMRE Dataset
This section outlines the collection process of SCMRE, aimed at developing
generative models for multimodal HCI combining both language and gestures. It
covers the IVA development, participants recruitment, human-IVA collaboration,
and data statistics.

3.1 Development of the Interactive Virtual Agent (IVA)

We developed a standalone version of the Diana system [27, 50], a virtual agent
designed for task-based interactions with humans using live gestures and speech.
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In this implementation, humans interact with randomly positioned objects, pro-
viding both verbal (relational, historical) and non-verbal (deictic), references in
response to Diana’s prompts. As depicted in Figure 1a, Diana asks questions
such as "Which object should we focus on?" while the human points using the
mouse/trackpad, with the purple reticle fluctuating in location and size to ap-
proximate the noise inherent in live deictic gesture detection, as in the original
Diana system. We created algorithms to parse and interpret human-generated
multimodal referring expressions, including attributive REs, which describe ob-
jects properties, relational REs, which define objects by their relations to other
objects, and historical REs, which uses previous events to describe objects, align-
ing them with deictic gestures, as shown in Figure 1b-f. Diana generates verbal
and non-verbal behaviors, e.g., in Figure 1h, to enhance social fluency [66], using
text-to-speech and animation for gestures, confirming understanding, responding
to prompts, and displaying emotions. This system improves naturalistic human-
computer interaction by accurately integrating speech and gestures. Further de-
tails can be found in [1, 50].

3.2 Human-IVA Collaboration Data Collection
To investigate human MRE generation, we organized human-IVA interaction
sessions, consisting of 24 participants from Colorado State University (CSU)’s
Computer Science Department. Participants, aged 18-35 (mean = 27, SD =
4.21) and fluent in English, included both males and females with diverse na-
tive languages. The study was approved by CSU’s IRB. Participants received
compensation in the form of Amazon gift cards or extra course credit. Each par-
ticipant downloaded the IVA executable and engaged in an object identification
task across 10 scenes, using language, deixis, or both to identify 10 target blocks
per scene. Successful referencing occurred when Diana correctly identified the
intended object. During the interaction, the IVA’s and participants’ movements
were logged, including parameters outlined in [25].

3.3 Data Statistics
The SCMRE corpus is organized by incorporating each generated event, includ-
ing actions and referring expressions, as a distinct sample. As shown in Table
1, the elicitation process resulted in a total of 10,408 events, including 7,681
pointing-only references, 551 transitive attributive events, 641 attributive events,
369 relational events, 27 historical events, 453 non-executed events, and 686 non-
referencing events—which include 428 undoing events, 118 refusal events, and
117 affirmative events. In terms of modalities used by humans, 575 events were
generated multimodally by mixing deixis and language, 7,681 events were gen-
erated using pointing-only, and 2,152 events were generated using speech-only.
The number of events generated by each participant varied from 258 to 801
(mean = 444, SD = 171). Additionally, the data includes 194 recorded videos
spanning approximately 36 hours, ranging from 24 minutes to 4 hours (mean
= 01:27:52, SD = 0.04). The IVA, Diana, responded to each human-generated
event, totaling 10,408 IVA responses. She generated 5,271 multimodal actions for
539 multimodal events, 3,628 pointing-only events, 686 non-referencing events,
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Fig. 1. Human-IVA interaction. a) Diana asks: "Which object should we focus on?"
with a fluctuating purple circle indicating the pointing gesture; b) Speech parsing
using Stanford CoreNLP [44]; c) Syntactic transformation of speech to Predicate Logic
Format (PLF); d) Example of speech converted to PLF; e) Interpretation algorithms
for complex MREs; f) Simulation of PLFs using VoxWorld platform; g) Diana acts on
human prompts.

and 418 speech-only events. Moreover, she reacted unimodally: using deictic ges-
tures for 4,053 pointing events to confirm understanding and using language to
request more information for 1,084 events.

4 MRE Generation Model

4.1 Data Preparation

To create a robust and diverse dataset that ensures that an LLM trained over it
can contextually generate MREs, four key preparation steps were applied to the
SCMRE dataset: annotation, augmentation, synthesizing, prompting and split-
ting, as illustrated in Figure 2. Dataset before and after preparation is publicly
available in GitHub1.
1 https://github.com/nadahass/SCMRE_Dataset
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Table 1. Quantities of human-generated events based on modalities used, including
deictic gesture, speech only, or both.

Humans’ Used Modalities
Events Modalities Quantity Total
Attributive Multimodal Events

Multimodal

186

575Transitive Attributive Multimodal Events 302
Relational Multimodal Events 48
Historical Multimodal Events 3
Not executed multimodal events 36
Focus and target pointing Pointing-Only 7,681 7,681
Attributive Speech Only Events

Speech-Only

455

2,152

Transitive attributive speech only events 249
Relational speech-only events 321
Historical speech-only events 24
Non-referencing speech-only 686
Not executed speech-only events 416

Total 10,408

Fig. 2. The main steps of data preparation, including annotation, augmentation, syn-
thesizing, prompting, and splitting.

Data Annotation. This step addressed 453 prompts that were not executed be-
cause they could not be parsed by the IVA’s parser component. One such example
is “move blue block in corner to pink block,” where failure to correctly parse “in
corner” resulted in an invalid PLF form. This failure prevented the identification
of target objects and associated parameters. The parameters that were logged
for these prompts include timestamps, utterances, relations, configurations, and
previous events. To effectively explore human referential behaviors and train our
model, we included the remaining parameters: focus objects (focus of discourse),
destination objects (objects to which other objects are moved), focus positions,
target positions, and demonstratives. We systematically review these prompts
and their corresponding videos to predict the focus and target objects, extract
their positions from the generated configurations, and identify the demonstra-
tives within the linguistic prompts.
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Table 2. Quantities of original, augmented, and synthesized datasets

Dataset Speech-Only REs Multimodal REs Pointing-Only REs Total
Original Dataset 2,152 575 7,681 10,408

Augmented Dataset 6,550 2,296 7,681 16,527
Synthesized Dataset 6,550 7,928 7,681 22,159

Data Augmentation. A data augmentation method was utilized to increase both
the size and diversity of SCMRE. Specifically, we employed the Synonym Aug-
mentation technique from the NLPAug library [42] to expand the range of mul-
timodal and speech-only referring expressions. Each original expression was aug-
mented to produce three similar expressions. To maintain semantic similarity to
the ground truth MRE, we systemically reviewed and adjusted the augmented
expressions by replacing less popular or informative words to align with our
specific requirements. We then used BERT Score [69] to assess semantic sim-
ilarity between augmented REs to human REs using the cosine similarity of
their respective embedding vectors. We achieve an average BERT-Precision of
97.1%, BERT-Recall of 97.6%, and BERT-F1 97.3%. The dataset was expanded
to include 16,527 events, comprising 2,296 multimodal REs, 6,550 speech-only
REs, and 7,681 pointing-only REs. Both multimodal REs and speech-only REs
obtained significant increases compared to their original counts (Table 2).

Data Synthesis. Despite the expansions resulting from augmentation, the dataset
remained imbalanced, particularly in multimodal REs, potentially affecting the
robustness of MRE generative model training. To augment the dataset with di-
verse multimodal samples, we synthesized individual pointing-only and speech-
only samples to create new multimodal RE samples. This process involved iden-
tifying instances where both deictic gestures and speech were used to refer to the
same object at the same spatial location. By aligning these expressions based
on their shared focus object and position, we created composite samples that
incorporate both modalities. Consequently, an additional 5,632 multimodal RE
samples were incorporated, expanding the multimodal samples to 7,928 and in-
creasing the total dataset size from 16,527 to 22,159, as shown in Table 2.

Prompt Engineering. We used Alpaca [61] as the basis for our MRE-generating
model. Alpaca’s Instruction-following models require structuring the data in a
way that aligns with the model’s architecture, incorporating instructions, inputs,
and outputs consistently throughout the dataset. This involved concatenating a
set of columns for both the input and output components as shown in Figure 2.
The input tuple includes configuration, relations, focus object, target object,
and previous events, while the output tuple comprises the utterance, modality,
demonstrative, and pointing location.

Data Splitting. For training experiments, we split the original and enhanced
dataset into three subsets: a training set, validation set and a testing set. The
training set, comprising 80% of the total data, was used to train models. The
validation set, consisting of 20% of the total data, was reserved for evaluating
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the model’s performance. The testing data, comprising 20% of the validation
data, was used to assess the model’s generalization ability on unseen data. Table
3 illustrates the resulting number of samples in each set for both original and
enhanced datasets. To ensure an unbiased representation of the data, the datasets
were shuffled and the division was performed randomly.

Table 3. Training, Validation, and Testing Sets

LLaMAModels Train. Set Valid. Set Test. Set Total
Original Dataset 8,325 1,665 417 10,407

Enhanced Dataset 17,727 3,545 887 22,159

4.2 Model Architecture
We used open-weight LLaMA models [62] to conduct parameter-efficient fine-
tuning for generating contextually-correct and situationally-fluent referring ex-
pressions, including language and gesture. As illustrated in Figure 3, the model
takes a query, representing the target object O, its position P , relations R, con-
figurations C, and previous events H; and outputs a descriptor tuple, ⟨Modality,
Utterance, Location, Demonstratives⟩. M ∈ {Gesture, Language, Ensemble}, U
is a decoded sentence embedding, L is the location the gesture grounds to, and
D ∈ {the, this, that}. Depending on the value of M , some of the other pa-
rameters may be empty by default. The query constitutes a description of the
environment in which the agent is situated, along with an utterance prompting
for a referring expression, and the model is optimized to generate output that
approximates what a human would say in response to the prompt, while remain-
ing situationally-grounded, fluent, natural, and referring to the correct object.
The query ⟨ O = RedBlock, P =< X,Y, Z >, R = [Right(RedBlock, Green-
Block),...], C = [< X ′, Y ′, Z ′ >, ...], H = [Put(YellowBlock),...] ⟩, represents the
target object (the red block), the current spatial arrangement, associated rela-
tions and previous events. The corresponding output, ⟨ multimodal, pick the red
block, < X ′′, Y ′′, Z ′′ >, the ⟩, contains the elements of the generated multimodal
referring expression. Here, this output prompts the agent to utter “pick the red
block” while pointing to location < X ′′, Y ′′, Z ′′ >.

4.3 Learning Experiments
We fine-tuned multiple LLMs using Low-Rank Adapters (LoRA [20]) to enhance
parameter and memory efficiency. LLaMA [62], developed by Meta AI, includes
large-scale language models available in four parameter sizes: 7B, 13B, 33B, and
65B, and empirical studies indicate that even the LLaMA-13B model, with just
1
10 of the parameters, surpasses GPT-3 (175B) [7] in most benchmark evalua-
tions. For this study, we selected LLaMA-7B and LLaMA-13B as our founda-
tional experimental models. To enable loading these models, fitting them into
memory, and speeding up inference, we employed 8-bits quantization to repre-
sent weights with lower-precision data types. We use LLaMA 2 in this study,
which for convenience is hereafter simply referred to as “LLaMA."
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Fig. 3. The architecture of multimodal referring expressions generation model

Table 4. Hyper-parameters of Fine-tuning and Training Time for LLaMA Models

Models Dataset Learning rate Epochs Steps Training Time (hh:mm:ss)
LLaMA-13B 8,325 3× 10−4 0.14 300 3 : 54 : 29

LLaMA-13B 17,727 3× 10−4 0.07 300 6 : 49 : 15

LLaMA-7B 17,727 2× 10−5 0.25 1,107 9 : 00 : 35

LLaMA-13B 17,727 3× 10−4 1 4,432 48 : 30 : 10

According to the code implementation of Alpaca-LoRA, we applied patches
to the LoRA modules for the key, query, and value matrices, setting their rank
to 8, a scaling factor to 16, a dropout rate of 0.05, and task type to CAUSAL_LM.
This setting reduced the trainable parameters from 13, 022, 417, 920 parameters
to 6, 553, 600 parameters, allowing models to be processed on 2 NVIDIA RTX
A6000-49GB GPUs.

We utilized a learning rate of 2 × 10−5 for LLaMA-7B and 3 × 10−4 for
LLaMA-13B. The fine-tuning process included one LLaMA-7B model that was
fine-tuned for 1, 107 steps, and three LLaMA-13B models were fine-tuned, two
for 300 steps each, and one for 4, 432 steps. We applied AdamW as a stochastic
optimization method with a global batch size of 4 and precision of fp16. We
incorporated warm-up steps of 100 and validation steps of 100 for all models. The
checkpoint with the best cross-entropy on development set was retained. Table
4 lists the hyper-parameters, training sets and training time that are related to
each fine-tuned model.

4.4 Results
Loss Entropy. The loss curve for LLaMA-13B in Figure 4a, trained for 4,430
steps (1 epoch), shows faster convergence and achieves lower loss values com-
pared to LLaMA-7B in Figure 4c, which was trained for 1,107 steps (0.25 epochs).
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The fine-tuned LLaMA-13B reached training and evaluation losses of 0.517 and
0.515, respectively, while the LLaMA-7B obtained 0.576 and 0.575.
Perplexity. As depicted in Figure 4b,d, the perplexity of both models decreases
steadily as training progresses, indicating that both fine-tuned models are learn-
ing and improving their predictions over time. Nonetheless, the LLaMA-13B
model demonstrates a more rapid decrease in perplexity compared to the LLaMA-
7B model. The fine-tuned LLaMA-7B achieved training and evaluation perplex-
ity values of 1.777 and 1.779, respectively, whereas the LLaMA-13B recorded
values of 1.676 and 1.674. This suggests that LLaMA-13B converges faster and
achieves better performance more quickly.

(a) (b)

(c) (d)

Fig. 4. The loss (a) and perplexity (b) of LLaMA-13B after one epoch of training. The
loss (c) and perplexity (d) of LLaMA-7B after 1,107 steps of training

Comparisons between Human and LLM Utilization of Referring Strategies. We
tested the performance of fine-tuned Alpaca LoRA-based models—namely LLaMA-
7B and LLaMA-13B—in integrating gesture and speech for referential behaviors
across various parameterizations. Using datasets of 10K and 22K samples and
varying training epochs and step counts (see Table 4), it was observed that the
performance improved with larger datasets, models, and more training steps.
The LLaMA-13B model, trained for one epoch on a test set of 887 samples,
demonstrated the best performance in mixing modalities for generating refer-
ring expressions as depicted in Figure 5d. It generates 40.61% of multimodal
REs, 13.91% speech-only REs, and 45.48% of pointing-only REs, closely re-
sembling human utilization of modalities when generating REs as in Figure 5e:
43.55%, 22.29%, 34.16%, respectively. Nevertheless, pointing-only REs dominate
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with the tuned LLaMA-13B model trained on the original dataset. In Figure 5a,
they account for 96% of outputs. On the LLaMA-7B model (Figure 5b), they
account for 55.13%, and on the enhanced dataset with fewer steps (Figure 5c),
they account for at 54.31%.

(a) (b)

(c) (d)

(e)

Fig. 5. Quantities of Human and LLM Generated Pointing, Linguistic and Multimodal
Referring Expressions.

Similarity between human-generated and LLM-generated MREs. Successful gen-
eration results in a descriptor tuple that includes speech, demonstrative, gesture,
and the target location for the specified target object and scene configuration.
The multimodal generated description should maintain semantic similarity to
the ground truth MRE. Semantic similarity must be attained at both the speech
and position levels. The tuned LLaMA-13B model for one epoch surpasses all
models in achieving similarity to human outputs on both the tuple and speech
levels. It achieves an average BERT-Precision of 93%, BERT-Recall of 93%,
BERT-F1 of 93%, and IoU of 72% on the tuple level, and an average BERT-
Precision of 91%, BERT-Recall of 92%, and BERT-F1 of 91% on the speech
level. Figure 6 depicts the distribution of similarity results of BERT-F1 between
human-generated tuples and the dominant LLaMA-13B model-generated tuples.
Approximately 350 samples exhibit similarity results ranging from 98% to 100%.
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The remaining low-similarity results occur due to the divergence in generated
modalities compared to human samples.

Fig. 6. The distribution of BERT-F1 similarity results between human-generated and
LLM-generated MREs

(a) (b)

Fig. 7. Clarity level of the (a) LLM-generated and (b) human generated referring
expressions

Clarity of Generated MREs. Based on the significant reduction in ambiguity
levels observed when humans used co-gestural referring expressions (REs) while
interacting with the IVA (see Section 5.1), we evaluate whether LLM-generated
references maintain this level of clarity. We compared human and LLM-generated
REs based on the information provided to communicate their intents. Figure 7
categorizes the combined strategies used by human and LLM to convey informa-
tion about the target object. Humans utilized multimodal relational REs, multi-
modal attributive REs, speech-only relational REs, and speech-only attributive
REs. The fine-tuned model utilized all the above strategies except speech-only
attributive REs. This is a feature of the fine-tuned model, as using only object
attributes without additional clarification often requires interlocutors to seek dis-
ambiguation, leading to inefficient communication of intent. Figure 8 presents
examples of all combinations of RE strategies for both humans and the fine-tuned
model when referring to the same target objects in identical situations.

Correctness of Generated Positions. The fine-tuned LLaMA-13B, trained for one
epoch, achieved remarkable performance, with an average accuracy, precision,
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Fig. 8. Comparing human and IVA-generated REs for identical configurations.

recall, and F1-score of 99% for correctly generated positions. Performance for
LLaMA-13B with fewer steps and LLaMA-7B was notably lower, reaching 86%
and 97% respective for the LLaMA-13B models, and 87% for LLaMA-7B, as
shown by Figure 9.

5 Evaluation
To enable bidirectional communication between IVAs and humans using multi-
modal referring expressions, we previously proposed quantitative and qualitative
metrics to assess if an IVA’s non-verbal behavior generation aids human under-
standing. These metrics cover the following aspects: task completion efficiency,
software reliability, understanding diverse communications, and meaningful con-
tent contribution by the agent as detailed in [1].

5.1 Automated Quantitative Evaluation
Using quantitative metrics in [1], we assessed Multimodal Prompt Completion
Efficiency (MPCE) and Linguistic Prompt Completion Efficiency (LPCE) by
measuring differences in target identification and task completion times for mul-
timodal versus verbal-only REs. Human Interpretation Efficiency of Machine
Communication (HIEMC) measured the time from the machine’s reference gen-
eration to human target identification, and Agent Pointing Success Rate (APSR)
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Fig. 9. The performance of LLaMA models in predicting positions of target objects

tracked the success rate of the agent pointing to the target object. The subse-
quent analysis of SCMRE showed that multimodal referring expressions signif-
icantly reduce prompt ambiguity (p-value < .001, χ2-test) and enhance IVA
response efficiency (p-value < .001, ANOVA test; see Figure 10a,b). This is
evidenced by the IVA’s ability to correctly identify referenced objects and exe-
cute human prompts, demonstrating bidirectional communicative efficiency (see
Figure 10c,d). Additional quantitative metrics, along with their corresponding
results, for evaluating the model’s generation capability are detailed in Section
4.4. These results show the capacity of a generative model within HCI systems
to contextually integrate gestures and language, thereby enhancing task-based
interactions and facilitating more natural human-computer communication.

5.2 Human Based Evaluation
Alongside the automatic quantitative evaluations, we conducted two human-
based experiments on Amazon Mechanical Turk (AMT) to assess the fluency
and clarity of IVA and human-generated MREs. We proposed two criteria for
evaluating the generated MREs: 1) A qualitative comparison of IVA with human-
generated MREs, using Machine References Fluency Rate (MRFR), the rate of
top-rated machine references based on third-party human judgments, and Hu-
man References Fluency Rate (HRFR), the rate of top-rated human references
based on third-party human judgments, through preference ordering, 2) quanti-
tative comparison of IVA with human-generated MREs, using Machine Object
Identification Success Rate (MOISR), the rate of correctly identified objects (by
machine), and Human Object Identification Success Rate (HOISR), the rate of
correctly identified objects (by humans), through task completion [1]. Evaluation
data and results are publicly available on GitHub2.

Study Design. We selected 50 human MREs from the SCMRE dataset. These
were compared with 50 REs generated by the virtual agent in the same situa-
tion when driven by a generative model trained over the human data. A total
of 100 videos were collected. The referencing strategies examined for each of
2 https://github.com/nadahass/Human-based-Evaluation-MREG.git
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Diana’s completion time of (a) Speech Event (LPCE); (b) Multimodal Event
(MPCE); (c) Human Interpretation Efficiency of Machine Communication (HIEMC);
(d) Agent Pointing Success Rate (APSR); (e) Machine Object Identification Success
Rate (MOISR) and Human Object Identification Success Rate (HOISR), and (f) Ma-
chine References Fluency Rate (MRFR) and Human References Fluency Rate (HRFR)

human and IVA generation are pointing only REs, relational speech-only REs,
attributive speech-only REs, relational multimodal REs and attributive multi-
modal REs. Videos were used in a set of AMT human intelligence tasks (HITs),
wherein workers rated 1 video for both fluency and clarity, including 1 machine
generated RE or 1 human RE, for a total of 100 HITs. Workers first identified
the target object mentioned, then, they rate the fluency of each video descrip-
tion on a Likert scale (5 = best, 1 = worst). Each video was completed by 10
workers, for a total of 1,000 individual judgments. We recruited workers fluent
in English between 18 and 60 years old. They were given 1 hour per task and
were compensated $0.75 per HIT.

Results and Analysis. Upon analyzing 1,000 assignments, it was found that 300
were rejected for not following instructions or attempting to game the system,
and were subsequently republished. Workers, with an average lifetime approval
rate of 100%, invested approximately 30 minutes on average to complete the
tasks, indicating thorough engagement. The accuracy rates of identifying objects
referred to by humans and IVA were compared to the intended objects in the
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dataset. As shown in Figure 10e, the overall HOISR and MOISR were 82.6%
and 89.4%, respectively, demonstrating that the clarity level of IVA-generated
MREs strongly competes with human-generated MREs (p-value < 2.2e−16 using
Pearson’s χ2-test [49]). For the fluency task, Figure 10f shows MRFR of 73%
and HRFR of 67% , with ratings at "4" and "5". These results indicate that both
human-generated and IVA-generated MREs are perceived similarly in terms of
and fluency (p-value = 0.5529 using Pearson’s χ2-test). This suggests that IVAs
are capable of generating REs of comparable quality to those of humans.

6 Conclusion
Given the advancements in interactive agents, there is a growing expectation
that they will contribute to interactions in ways that resemble human behavior,
rather than just performing tasks. This study showcases significant advance-
ments in multimodal HCI capabilities, specifically in bridging the gap between
human and IVA communication capabilities in generating referring expressions.
The developed SCMRE corpus, coupled with the fine-tuned generative model
and comprehensive evaluation framework, enables more effective and naturalis-
tic interactions between humans and IVAs. Our findings demonstrate a means by
which IVAs can close the gap with human in generating contextually appropriate
multimodal referring expressions, which is one crucial capacity for more natu-
ralistic HCI. Future work will focus on refining the IVA’s ability to handle more
complex and bidirectional interaction scenarios, enhancing real-time processing
capabilities, and integrating these models into diverse application domains. Fur-
ther research is also needed to explore long-term user adaptation and the IVA’s
ability to learn from ongoing interactions.

Acknowledgments. We express our gratitude to our reviewers for their valuable com-
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