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Abstract. When analyzing interactions during collaborative problem
solving (CPS) tasks, many different communication modalities are likely
to be present and interpretable. These modalities may include speech,
gesture, action, affect, pose and object position in physical space, amongst
others. As AI becomes more prominent in day-to-day use and various
learning environments, such as classrooms, there is potential for it to
support additional understanding into how small groups work together
to complete CPS tasks. Designing interactive AI to support CPS re-
quires creating a system that supports multiple different modalities. In
this paper we discuss the importance of multimodal features to model-
ing CPS, how different modal channels must interact in a multimodal
AI agent that supports a wide range of tasks, and design considerations
that require forethought when building such a system that that most
effectively interacts with and aids small groups in successfully complet-
ing CPS tasks. We also outline various tool sets that can be leveraged to
support each of the individual features and their integration, and various
applications for such a system.

Keywords: Collaborative problem solving · Multimodal agents · HCI.

1 Introduction

When humans engage in collaborative problem solving (CPS), the interac-
tion is overwhelmingly likely to involve multiple communicative modalities si-
multaneously. Information may be communicated by speech, gesture, pose and
interacting with objects in physical space. As artificial intelligence (AI) becomes
more integrated with everyday workflows in environments such as classrooms
and workspaces, there is in increased potential for AI to support CPS in small
groups such as project teams or workgroups in classes.

In this paper, we present a vision of AI agents whose purpose is not to
automate tasks or replace human workers or teachers, but rather to augment
the natural collaborative capabilities of humans and enable teams to think and
and reason better. That is, in a classroom context, an effective agent would not
provide the answer to a problem, but rather assist a group in discovering the
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answer organically, thus optimizing learning and retention. An AI agent that ef-
fectively supports CPS must be able to interpret many forms of communication
to infer relevant context from a situation. However, accurate interpretations of
group interaction rarely rely on any one of the above features alone (e.g., linguis-
tic information alone may not adequately indicate which objects are the focus
of attention or discussion). Therefore, many design decisions must be made in
the data collection and feature extraction to make meaningful inferences about
small group communication, as would be performed by an assistive AI agent
in real-time. In addition, decisions need to be made about tools and common
logic used for feature extraction so they can be brought together and used in a
multimodal fashion. In this paper we examine design decisions made during the
creation of the Weights Task Dataset—a multimodal CPS dataset that serves
as our testbed, the features selected to motivate creation of a multimodal agent
to support collaborative problem solving in small groups, and a vision for inte-
gration to create meaningful methods for interactive AI for a wide range of CPS
tasks.

The attribution of mental states (e.g., beliefs, desires, and intentions) to
interlocutors is a primary requirement of successful collaboration, but modern
interactive systems, such as chatbots driven by large language models (LLMs)
struggle with this capacity [46, 56]. Namely they do not display fundamental
characteristics of a Theory of Mind (ToM). In large part, this is due to a lack of
mechanisms to interpret not just what is expressed, but how it is expressed, and
how human interlocutors will interpret expressions in context. This requirement
motivates many of the features we focus on in our proposed multimodal col-
laborative agent architecture. An agent endowed with the capabilities described
below, both technically and theoretically, would not simply be the sum of the
individual processing modules, but a gestalt system that, through the ability
to process, integrate, and engage with the multitude of ways that humans may
express their underlying mental states, simulates the epistemic positioning of
its interlocutors toward a task a la [30] and thus assists them in organically
achieving it.

2 Related Work

Given the interdisciplinary nature of this work, which draws on AI, human-
computer interaction, linguistics, and learning sciences, among others, there is a
vast background literature implicated by the various components of our research.
A few key works are referenced here, and more are provided in subsequent sec-
tions.

Collaborative problem solving (CPS) is when two or more people use “their
knowledge and skills to solve complex problems without predefined solutions” [50].
As such, this is a particular method of modeling interaction between users based
on research in the learning sciences. Frameworks for CPS have been developed to
capture relevant behaviors and different types of collaboration [1, 15, 49]. These
frameworks are helpful in creating labeled data and provide a bridge for com-
puter scientists to operationalize and apply knowledge from the learning sciences.
Previous work has successfully detected and classified these facets and showed
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improvements when using multimodal models [5, 48], explored technical require-
ments on an AI agent for tracking collaboration in small groups, such as relevant
toolkits [7], and showed how adding contextual features to models improves the
generalizability of the models in collaborative contexts [8]. We expand on both
of these topics in this paper.

The intersection of multimodal processing (gesture, pose, and other nonver-
bal behavior) with interactive systems demands an increased focus on common
semantic interpretations of different modal channels [42]. We draw from semantic
representation schemes at various levels of abstraction (of which [3] is a seminal
example), and unify them with coding schemes directed at collaborative problem
solving research grounded in the learning sciences [11].

A well-designed multimodal agent is likely to leverage multiple independent
communicative features to extract context from a scene to interpret the current
state of a given situation. Additionally, an agent might interact with participants
based on inferences drawn from the features. One such example of an interactive
multimodal agent is Diana, an embodied agent that collaborates with partic-
ipants as a direct participant the task itself [26, 27, 41]. Effective multimodal
design is vital in creating a system like Diana, in order to understand and best
interact with participants in real time. Diana models an interactive user, and
while it does not leverage communicative features to understand and provide
feedback on the current state of a task, it does leverage features, such as speech,
gestures and facial expression, to meaningfully understand and interact with
users as they work together to complete a task.

3 Weights Task Dataset

We ground our agent design in a dataset that represents human-human in-
teractions that display characteristics we want such an agent to augment and
amplify. The Weights Task Dataset (WTD) is a collection of audio-visual record-
ings where triads collaborate to identify the weights of various colored blocks,
and the pattern describing block weights (an instance of the Fibonacci series)
using a balance scale [23]. This dataset consists of 10 groups in which partic-
ipants interact with each other and physical objects in their environment to
complete this shared situated task. The interactions display reflective reason-
ing, consensus-building behaviors, and exposition of shared and contradictory
beliefs during the course of executing actions toward the task goal. The nature
of the task requires not just speech to communicate, but also gesture, action,
and nonverbal behavior. Therefore, an agent in this and similar tasks would need
to integrate inputs from diverse modal channels to interact effectively with the
group. Figure 1 shows two example stills from the WTD, with the correspond-
ing speech included. As a participant (Participant 2)1 picks up and and places a
block on the scale, they make two statements: “By touch feels lighter” and “And
that looks like it might be about even”. Without the additional context provided
by interpreting situated action and the locations of objects, it is impossible to
infer which block they are referring too, and whether or not their statements

1 Participants are conventionally indexed 1–3 from left to right in the video frame.
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are correct. Detecting gestures and actions—in this case a grasp—and tracking
object locations would provide the context needed to detect that the speaker is
referring to the green block.

Fig. 1: Stills from the Weight Task Dataset.

The dataset has been annotated, partially or completely, with most of the
individual features discussed in Section 5. Details on annotation procedures,
including adjudication and inter-annotator agreement, are given in [23].

4 Collaborative Problem Solving

Collaborative problem solving (CPS) is a form of collaboration wherein small
groups work together to solve a nonroutine task with no set plan, where the qual-
ity of the solution can be evaluated by the team members as the task proceeds,
and there is a differentiation of roles but interdependence within the team [15].
Previous work has designed several frameworks for identifying characteristics of
CPS. For example, Hesse et al. developed a framework to assess students for CPS
skills [18] which assesses students’ social and cognitive skills over the entirety of
the task rather than marking specific events as occurrences of displayed skills.
Andrews-Todd and Forsyth similarly broke CPS down into cognitive and social
dimensions [1] but at a level that is specific to a simulated circuitboard task
and therefore not easily generalizable to other settings. A general CPS support
agent requires a framework that is not hyperspecific to actions only relevant to
one domain, but which can also ground CPS skill indicators to specific events
as the task unfolds. To this end, we use the framework developed by Sun et
al. [49]. In this framework, CPS was formalized into hierarchical levels; 19 indi-
cators that include moves such as proposing a correct solution or interrupting
others, and three facets which are Constructing shared understanding, Negotia-
tion/Coordination and Maintaining team function. These indicators allow us to
identify specific collaborative moves; for example, in Figure 1, the participants
are discussing the results of weighing two blocks, where discussing results is an
indicator enumerated in the Sun et al. CPS framework.

5 Features

5.1 Speech

Speech is a critical method of communication seen in group work. Partic-
ipants use this modality to share their understanding, ask questions, discuss
results, plan, and more. This is an explicit method of communication, making it
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a foundational starting point for any agent tracking group work. Previous stud-
ies demonstrated that speech is a meaningful feature for a model tracking group
states [5, 48]. When combined with other features, utterances can help add con-
text to how a participant is interacting with the space around them. Existing
automatic speech recognition (ASR) tools, such as Google ASR and Whisper
ASR [43, 59] can segment and transcribe audio into utterances of speech. Use of
automatic or manual segmentation is an important design decision in integrat-
ing speech with other channels, as it affects the fidelity of downstream inference
based on speech [51]. For real-time support, an agent will have to rely on an ASR
system. Speech must be automatically diarized and transcribed for a system to
work in real time, so these methods are a necessary component for an agent to
have.

There is a high proportion of demonstrative terms and anaphors (“this”,
“that”, “it”, etc.) implicated in dialogue during situated shared tasks. Auto-
matically interpreting them usually involves recourse to another modality such
as deictic gesture. As an interpretational technique, Dense Paraphrasing is a
linguistically-motivated textual enrichment strategy that explicitly realizes the
otherwise elided compositional operations inherent in the meaning of the lan-
guage. This broadly involves three kinds of interpretive processes: (i) recognizing
the diverse variability in linguistic forms that can be associated with the same
underlying semantic representation (paraphrases); (ii) identifying semantic fac-
tors or variables that accompany or are presupposed by the lexical semantics of
the words present in the text, through dropped, hidden or shadow arguments;
and (iii) interpreting or computing the dynamic changes that actions, events,
and other communicative modalities impose on objects in the text.

More formally, given the pair, (S, P ), where S is a source expression (e.g., a
textual narrative, image caption, or a speech transcription), and P is a linguistic
expression, we say P is a valid dense paraphrase of S if: P is a lexeme, phrase, or
sentence that eliminates any contextual ambiguity that may be present in S, but
that also makes explicit the underlying semantics that is not (usually) expressed
in the economy of sentence structure, e.g., default or hidden arguments, dropped
objects or adjuncts. P is both meaning-preserving (consistent) and ampliative
(informative) with respect to S.

5.2 Acoustics

Acoustic features convey additional meaning in language. From turn-taking
to posing a question, they way someone presents their statements provides ad-
ditional information to others. Acoustic information allows us to understand
sarcasm, perceive tone, recognize high energy, and more. For an agent, acous-
tics (cadence, prosody, etc.) can help classify the sentiment of statements. Prior
work has shown that acoustics are useful features for a model classifying a group’s
state [5, 48]. One system for automatically extracting acoustic features is openS-
MILE [13]. This allows users to retrieve the acoustic information within a de-
tected segment. There are also existing feature sets which extract acoustic fea-
tures relevant to human voice such as the GeMAPS set [12]. This is a condensed
set which captures the most impactful information for sentiment in acoustics us-
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ing a minimal amount of features, making it fast and lightweight—ideal for a live
system. These acoustic features would be automatically extracted by an agent
to more accurately process human language, including being able to distinguish
questions from statements based on tone and cadence.

5.3 Gesture and Pose

Gestures and body language may also be important communicative modali-
ties. Gesture is frequently used to disambiguate language and has complementary
strengths (for instance, deictic gesture is naturally suited to indicating locations,
while spoken language is more felicitous for indicating nominal qualities such as
color). Pose and body language in a group context, meanwhile, can be an indica-
tor of engagement with the team or lack thereof, focus of attention, etc. However,
the interpretation of gesture and body pose may be subjective, and conditioned
upon personality, background, culture, etc. [24]. Therefore, in a computational
context, some form of structured representation language is required to make
the continuous discrete and the intractable tractable.

The two representational schemes we build on here are Gesture Abstract
Meaning Representation (GAMR) for gesture [6] and Nonverbal Interac-
tions in Collaborative-Learning Environments (NICE) for other kinds of
nonverbal behavior [10]. Annotations using these frameworks serve as output
sets against which gesture and pose recognition models can be trained.

GAMR Gesture AMR (GAMR) is a formalism intended to encode the mean-
ing of gesture in multimodal interactions between agents. It is an extension to
Abstract Meaning Representation (AMR), adopting both the annotated graph
structure and the predicate-argument representation of that formalism [3]. Ges-
ture AMR was developed to encode how gesture packages meaning both inde-
pendently of and in interaction with speech; and how the meaning of gesture is
temporally and contextually determined.

GAMR Gesture Unit

(g / gesture-unit

:op1 (i / icon-GA

:ARG0 (g2 / gesturer)

:ARG1 (b / block)

:ARG2 (a / addressee))

:op2 (d / deixis-GA

:ARG0 g2

:ARG1 (l / location)

:ARG2 a))

Gesture AMR distinguishes four
general types of referential gestures:
iconic, deictic, metaphoric, and em-
blematic [22, 25, 34, 35]. Because our
data focuses on gestures in a task-
based setting, most depictions of enti-
ties and events appear to reflect their
concrete properties, such as the shape
of an object or the manner of an ac-
tion. Similar to the interactions re-
ported on in [6], metaphoric gestures
do not appear with any frequency.

GAMR includes schemata to annotate gestures that fall into one or more of
these categories, thus providing granularity when representing a variety of ges-
tures that might be used to communicate in various CPS tasks. The inset shows
the structure for a “gesture unit” including both deixis and iconic components.
ARG0 denotes the gesturer, ARG1 the semantic content of the gesture and ARG2 is
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the addressee or intended recipient; these fields exist for each gesture subsection
in the annotation.

NICE The NICE coding scheme captures nonverbal behaviors when people are
working together in groups. There is a subtle, yet important distinction between
a silent individual who is nonverbally participating in their group and a silent
individual who mostly works by themselves and neither verbally nor nonverbally
participates. Additionally, different nonverbal cues can occur concurrently, and
in clusters [63].

NICE captures multiple modalities that indicate collaborative learning and
engagement, such as the direction of gaze (where are they looking?), posture (are
they leaning toward or away from the activity area?), and usage of tools (includ-
ing pointing at or to the tool, as well as directly manipulating it). Eye gaze could
be indicative of where attention is directed [47, 52], whether it is jointly on group
work or on other interlocutors. Head movements (such as nodding in agreement
or shaking in disagreement) are captured as an indication that the person is
paying attention [38], as are leaning forwards to look at the joint activity or par-
ticipating in the same [4]. The coding scheme also captures contrasting behaviors
that would imply lower collaboration or attention, such as looking at or doing
their own work (instead of the joint work) or outside the activity area, leaning
away, “fiddling” (idly interacting with non-task-related objects or interacting
with task-related objects in non-task-related ways) [16], etc. Additionally, the
NICE coding scheme captures four emotions (positive emotion, negative emo-
tion, boredom, and confusion/concentration) as they are working together, based
on observational cues, which provide indications of learning [54].

NICE is designed to be calibrated to the task in that the vocabulary of objects
must be pre-specified to match the perceptible object space of the common
ground that evolves between participants as the task unfolds.

Gesture Recognition There are many possible solutions to gesture recognition
[14, 17, 36, 53], but nearly all suffer from difficulties in recognizing gestures at un-
usual angles or that may be far from camera, and deep learning approaches come
with a high training and data overhead, making them difficult to adapt to new
environments and situations. This difficulty demands a more lightweight robust
solution that can rapidly be deployed under novel circumstances, potentially on
everyday hardware.

From the gesture semantics community comes a tradition of modeling ges-
ture in terms of preparatory, “stroke” (including pre- and post-stroke “hold”)
and subsequent recovery phases of gestures [2, 21, 31]. Based on this, we previ-
ously developed a gesture recognition pipeline, with the goal to streamline the
detection of complex gestures, for eventual deployment in real time [57]. This
pipeline uses hand detection tools, like MediaPipe [62], to detect joint locations
of individual hands in a frame (21 joints in 3D coordinates). The pipeline is
made up of three major stages: a static classification model that recognizes the
general static shape of a gesture in any of the “hold” phases, a movement seg-
mentation algorithm that tracks the movement of hands over time and breaks
a video stream down into segments based on changes in motion patterns, and
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a phase breakdown process that uses the results of the previous steps to iden-
tify segments with frames in a “hold” phase. The start and end frames of these
hold segments are recorded as “key frames,” or the the frames that comprise the
most semantic significance of any given gesture. Individual static classification
models can be trained for a variety of different relevant gestures for CPS tasks,
providing flexibility and granularity for a larger multimodal system. We have
leveraged this pipeline to successfully detect multiple different kinds complex
gesture, ranging from subtle small hand movements (microgestures [61, 57, 20]),
to deictic gestures [58].

Figure 2 shows an example of our recognition method applied to pointing
detection in the WTD. In the frame we can see that Participant 1 is pointing at
the blocks on the scale. A pointing frustum built around the vector extended out
from the participant’s index finger has further narrowed down the blue block as
a target of interest (see [58] for details). Through a comparison to the GAMR
annotations at the same intervals, we can see that the blue block is in fact the
intended target. Combining target detection using deixis with other features like
speech in a multimodal system can further disambiguate the intended subjects
of action during collaborative problem solving.

Fig. 2: Group 1 deixis with GAMR example (reproduced from [58])

Pose Detection Similar adaptability concerns inform approaches to pose de-
tection in multimodal CPS scenarios. In this case, important features are more
likely to be associated with gross body motion than fine-grained joint positions
on the hand. Using the depth channel from Azure Kinect recordings, the posi-
tions and orientations of 32 joints on the body can be extracted, in a similar
manner to hand detection with MediaPipe. To classify instances of non-gestural
nonverbal behaviors, along the lines of those captured by the NICE coding, joint
features need to be tracked over time and converted to nonverbal behavior labels.
Suitable approaches to this task may include processing the concatenated raw
joint positions through a sliding window of fixed size to accumulate descriptive
features of the motion over time, and then training a neural classifier to fit the
relationship between joint positions and NICE codes.

Because the raw joint positions are anchored to the physical location of the
different participants, the individual bodies may either need to be segmented
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and processed individually with distinct models for each person, or transformed
into a normalized space before feature processing and classification.

5.4 Actions

Action Annotation

(p / put-ACT

:ARG0 (p1 / participant-1)

:ARG1 (gb / green-block)

:ARG2 (o / on

:op1 (rs / right-scale)))

Actions in context pro-
vide important information
that situates other modalities
within the environment. For
instance, the subject of an ac-
tion may be the antecedent
of a subsequent demonstra-
tive even if it is never explic-
itly labeled in dialogue. This

motivates the use of a rigorously-defined interaction semantics for action track-
ing. Annotation of all task-specific actions engaged in by the participants, like
GAMR, follows an AMR-style syntax which introduces the notion of annotating
actions in the style of speech and gesture. This involves making reference to a
taxonomy of action classes, adapted from relevant predicates from PropBank
[39], that are interpreted as VoxML programs [40]. For example, an action of
putting a green block on the right side of a scale would be assigned the anno-
tation shown. The argument structure given for the Action AMR annotation of
this event follows that of the corresponding PropBank predicate, in this case,
put-01.

The results of actions performed over objects accommodate downstream rea-
soning, such that in a context or configuration C, the execution of an action or
program π results in state R (C → [π]R according to [41, 42]) which can further
indicate what a participant may be thinking or reasoning about. For instance, in
Figure 1, P2 placing the green block on the scale is also an indication of intent
and of what P2 believes the likely results will be based on the affordances of the
objects involved: in this example, namely, that the scale will end up balanced.

5.5 Facial Expression

Facial expression is an informative modality for an agent tracking group
work, as it can indicate both level of engagement (similar to body pose) and
also participants’ attitudes towards individual events or even each other. Recent
work has shown improvement in facial expression recognition through improve-
ments in deep learning [32, 33]. However, there is a great diversity of ways to
interpret different facial expressions, often depending on context. For our pur-
poses we care about the relations of specific expressions to collaborative problem
solving. Toward identifying these affects, D’mello and Graesser defined patterns
in affective states specific to learning [11]. This allows us to narrow down into
expressions that will be important for an agent to track. Recent work focusing
on these affective states has been able to recognize facial expressions represent-
ing these states [45]. This modality allows an agent to identify the learner’s
affective condition. For example, an agent may detect that a learner is confused
and offer clarification. Previous work also showed eye gaze to be an informative
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feature for classifying group member involvement [37]. While eye gaze detection
is still limited, it could be an informative channel for an agent when detecting
participation.

5.6 Physical Space

Fundamentally, an agent will be unable to meaningfully interact with users
and support groups in a physical context without the ability to track the move-
ment of objects in space and make inferences regarding the relationships between
them. Mechanistically, this requires common calibration settings to allow data
extracted using various tools to be used together (e.g., gesture landmarks exist
in the same space as the object locations). The use of 6DOF object pose esti-
mation [9] to extract object locations admits challenges when deployed in group
work scenarios, particularly those in classroom environments, where interactable
objects are likely to be small, moved a lot, and subject to partial or complete
occlusions. One way to address this is with a model that estimates the object
mask to predict the position of an object and then crops the masked image to
estimate the its rotation.

6DOF Pose The position of an object in 3D Cartesian space can be estimated
through prediction of the object’s 6DOF pose (6 degrees of freedom, comprising
translation and rotation in all three orthogonal dimensions [19, 29, 60]). By de-
tecting the positions of objects, a system may couple that with their sizes and
properties (see Section 5.4) to make inferences about the physical relationships
between objects. Another advantage is that 6DOF pose estimation allows objects
to be tracked over time, and thus allows tracking the context of an interaction
with an object that may results in a change to its state or configuration. This
information is typically extractable from an RGB pixel stream, but in our usages
we also leverage the additional benefits of a depth channel, for instance by using
Azure Kinects, for greater accuracy.

The challenge of CPS tasks for 6DOF pose estimation is the difficulty of
visual feature extraction. To capture a sufficient amount of the scene in which
a CPS task typically unfolds, the camera must be placed further away from the
relevant objects that it typically has been in other 6DOF pose estimation tasks
and datasets [44, 55]. This is naturally required to capture the participants and
how they interact with each other using modalities such as gesture and pose
(see Section 5.3), but also renders the relevant objects very small in the frame,
making them difficult to annotate for training, and to capture at inference time.
Figure 3 shows the challenge of 6DOF pose annotation in the WTD.

Figure 4 shows the convergence of pointing and object detection. When per-
forming automated object selection using deixis, an end-to-end solution would
require that the objects be automatically detected within the scene at the same
time that gestures are also recognized, rather than using pre-annotated bound-
ing boxes (as in Figure 2). Current state of the art approaches to tasks of this
kind are typically composed of multiple modules, trained over a combination of
real images and 3D renderings of the objects of interest in a variety of orienta-
tions. A typical solution may start with a convolutional neural network (CNN)
to extract spatial information and visual features of objects. Visual features are
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Fig. 3: 6DOF Pose Annotation Tool on CPS Data. A shows the current frame
number, B shows the position and rotation information for each object of inter-
est, and C (expanded in inset) shows annotated 2D and 3D bounding boxes.

used to predict the poses of objects in the next module. Following this, a “re-
finement step” takes place, in which the module estimates object pose and those
estimates are used to render images of the objects, which are then compared to
the real training images. Error is backpropagated until the renderings and real
images are within an appropriately small epsilon.

Fig. 4: Ground truth object bounding
boxes (blue) and predicted bounding
boxes (red). Deixis is used to select a
spatial region containing one or more
objects, which may be further disam-
biguated by contemporaneous speech or
prior context.

One or more objects may be de-
tected within a region singled out by
deixis, indicating the object or set
of objects that are the likely foci of
attention. This may be further dis-
ambiguated by linguistic information,
such as nominal descriptors or pre-
vious discussion of objects that have
been acted upon.

6 Multimodal Fusion

A key foundational challenge of
signal fusion is one of aligning the dif-
ferent modal channels. For instance, a
non-linguistic feature could align with
more than one utterance. One com-
mon strategy to handle such instances
is mapping non-linguistic inputs to

the utterances that they share the greatest temporal overlap with. A poten-
tial problem with this strategy may arise if, for instance, a very brief gesture
begins at the end of one utterance A, but lasts long enough to overlap more
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with the next utterance B. Another possible issue is when ASR models detect
speech where none exists, causing non-linguistic inputs to end up aligned with a
“hallucinated” transcription. Alternate mapping strategies could involve choos-
ing the overlapping utterance based on length, semantic qualities, or distance
metrics between feature representations, such as a GAMR annotation and an
utterance’s AMR.

With the level of feature diversity presented and the wide variation within
each, to arrive at a representation usable by an AI system, a deep learning
solution is de rigueur. Design choices in fusion algorithms will primarily revolve
around the step at which the fusion of the different feature types takes place, of
which there are 3 primary classes: early fusion, late fusion, or hybrid fusion.

In early fusion, the data is fused at the start of the learning algorithm, such
as through concatenation, then processed as a single input. This may lead to
imbalance in feature contribution to the final output. If the different modali-
ties differ in format or size (e.g., input dimensions or one-hot vs. real-valued
vectors), the output will be biased toward the numerically richer type of data,
regardless of semantic contribution. Late fusion trains on each modality sepa-
rately in unimodal submodules, and then merges those outputs. This method
can better handle imbalance in feature input size, as the submodules’ output
sizes are controllable and specifiable. This may result in a larger neural network
with associated potential issues, such as the vanishing gradient problem. Hybrid
fusion mixes the previous two: some modalities are trained separately, but if
two or more modalities have a certain connection (e.g., overlaps between gesture
and action), or if they have the same format and sizes, they may be handled
together. Fusion may be as simple as concatenating the features, depending on
the stage at which it is performed, or could involve more complex methods such
as learning attention weights between queries of one modality, and keys/values
of another modality. Figures 5a and 5b show high-level schematic diagrams of
early and late fusion, respectively. Hybrid fusion combines the two, in that the
some modalities may be processed through individual submodules while others
are input directly to the fusion layer.

(a) Early fusion schematic diagram. (b) Late fusion schematic diagram.

Finally, the joint representation is considered as a standard feature vector by
the prediction head. The model may leverage linear or non-linear layers either as
a discrete classification head or the joint representation may be fed into another
module, such as a pre-trained language model for output generation (see below).
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7 Behavior Generation

Our focus in this paper is on processing and integrating multimodal channels
to enable an agent to process human task behavior. To actually act upon its
inferences, however, the agent also needs to produce naturalistic output that is
coherent, on-topic, supports the task goal, and scales beyond deterministic and
trivial use cases. Such an agent would itself be multimodal, to symmetrically
replicate the same modes of interaction as human group members. Examples of
previous multimodal agents (e.g., Diana from Section 2) interact directly with
the user using speech, gesture, and action. This contrasts with our aims here,
which is to build an agent that supports group dynamics rather than performing
the task itself, but shows the importance of a multimodal generation capability.

The advent of generative AI models, of which large language models (LLMs)
such as ChatGPT/GPT-4 are noteworthy exemplars, provides a partial solution
to such a problem, with their facility in generating language that on occasion
appears indistinguishable from human writing or speech. A key challenge is that
off-the-shelf generative AI systems tend to 1) generate longer outputs than the
sentence fragments actually used by people during collaborative interaction and
2) display pronounced weaknesses in problems pertaining to situational and mul-
timodal reasoning. Open-weight LLMs can be tuned on task dialogue samples to
replicate more realistic dialogue structure. That is, rather than an LLM that pro-
duces fully informative, complete sentences, generated utterances should actually
be more fragmented and ambiguous, and dependent on multimodal information
that can then be validated against the environment.

Likewise, to generate multimodal information such as gestures and actions,
the underlying model needs to be trained to insert non-linguistic “tokens” into
the output. This may involve fine-tuning the autoregressive mechanism over
specialized datasets that include naturalistic multimodal ensembles, for exam-
ple of multimodal referring expressions (e.g., [28]). Multimodal information like
gesture and action annotations can be represented as special tokens, such as
unique non-human-interpretable identifiers added to the model’s vocabulary,
with their representations projected into the LLM’s space to facilitate gener-
ation in context. Outputted special tokens, when encountered by the agent’s
linguistic parser, would be skipped by the agent’s linguistic renderer (e.g., text-
to-speech system), and routed instead to a gesture and action manager to make
the agent execute behaviors that the language must then be grounded to. These
behaviors could be animated gestures and actions in a simulated environment,
or, with the right hardware support, deployed on a physical robot co-situated
with the group.

8 Evaluation

With a new type of interactive agent comes a need to develop appropriate
evaluation metrics to gauge success or failure of the agent design. Here we pro-
pose a number of quantitative and qualitative metrics that may be considered.
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1. Agent-augmented team vs. non-augmented team task completion rate. Agent
inferences and corresponding outputs can be correlated to group factors like
task completion time/rate and time to resolve uncertainties;

2. Agent adaptation to human behavior. Adaptations to improve group collab-
oration can be assessed with respect to which agent moves prompt increased
collaboration in the group members. This can be assessed over time to see
how the adaptation of agent outputs prompts more positive CPS from hu-
mans;

3. Common ground among agent-augmented team vs. non-augmented team. A
proxy for the ToM capabilities of an agent (human or artificial) is its ability
to build a consensus with its interlocutors and act according to it. Given
a task and a set of relevant propositions, CPS skills displayed by a group
(with or without the agent) can be correlated to beliefs or intentions the
group members correctly attribute to each other;

4. Decision making quality. While this is largely a subjective metric, an agent-
supported group should be more transparent, reflective, and deliberative,
while drawing on the perspectives of everyone involved and the collective
knowledge of the group, resulting in decisions supported by all parties and
the maximum spectrum of available evidence.

9 Applications

There are many different applicative use cases for multimodal systems that
interpret and return feedback based on small group communication. A well-
designed AI agent would collect and interpret enough context from a situation
to aid in the problem solving process. For example, it could point out infor-
mation the group members may not have considered, realign priorities based
on team needs, and incorporate collaborator knowledge on the fly through a
representation of objectives, subgoaling, changing plans, uncertainty, etc. Using
the WTD as a specific example, the collaborative AI agent could maintain a
model of the Fibonacci sequence as the goal and would be able to interpret the
group’s general understanding as they work to discover said pattern, based on
how they communicate and the CPS skills they display. The agent would aid the
participants by helping them reach the correct conclusion organically, and could
also learn based on participants’ task behavior, further tuning its feedback to
the group to support their learning in an optimal way. A similar feedback cycle
could be applied to any collaborative task, thus empowering teams to think and
reason better in a wide range of different tasks and circumstances.

An agent might also take a more direct interactive approach to aiding small
groups. One way would be to model the shared and individual beliefs of group
members. This would enable it to raise questions about unspoken or unresolved
conflicts or intervene in cases of groupthink for which there is no evidence. This
is an important capability to prevent groups from making critical errors. As
the agent gathers data on communication style and the beliefs of individuals, it
would directly intervene and steer the conversation to correct misapprehensions
or encourage more productive solutions to relevant subgoals. In the WTD, this
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might occur when one or more individuals believe a block is the incorrect weight.
The agent could step in and ask participants to try weighing a specific combi-
nation of blocks. It could then analyze both if the correct conclusion was drawn
from the action, and which CPS skills were displayed during the subdialogue.
This interaction style could also be applied to a variety of CPS tasks providing
a more direct teaching style for team support.

Fig. 6: Still of Group 10 from the Weights Task.
The group is working to discover the weight of
the blue block, based on inferences about the
red block. Red text over each participant shows
beliefs each apparently holds at this point, based
on their prior utterances and actions.

Figure 6 shows a still
from the WTD where a
group is working to deter-
mine the weight of the blue
block, based on previous in-
ferences about the red blocks.
In this scene multiple differ-
ent modalities can be lever-
aged by an agent to de-
termine the validity of the
group’s thought process, in-
cluding but not limited to,
what participants are saying,
which blocks they are point-
ing at or grasping, and the lo-
cation of the blocks relative
to the scale. For instance, the
whole group believes the blue

block weighs 10g, but P2 and P3 disagree about the red block. P3 acts based on
his belief but P2 makes an inference based on his (expressed in speech).

Both of the aforementioned agent styles would be valid ways to help the
group succeed. In the Weights Task example, in a more organic approach the
agent would continually collect and process dialogue moves and analyze how the
group is working towards the intended goal; for example, by performing infer-
ences over recognized gestures and actions to understand what blocks are being
interacted with, object recognition of their locations on the scale, and linguistic
understanding of the group’s statements to each other, the agent could verify
that the current thought process is generally directed toward discovering the
correct pattern even if there are specific inaccuracies at the current time. Using
a more direct approach, the agent could reason over the inferences of each indi-
vidual up to the current point in the task and intervene with corrective measures
to help drive valid inferences toward the discovery of the overall pattern.

10 Conclusion and Future Work

Small groups engaged in CPS are likely to engage in various forms of multi-
modal communication, often simultaneously. In this paper we presented a design
for an AI agent intended to support small group learning and collaboration by
interacting with or providing feedback to individuals participating in various
CPS tasks, specifically in a classroom setting. Potential communicative modal-
ities such a group could utilize include speech, gestures, pose, and interaction
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with objects in physical space. To create such a system, tracking and interpret-
ing various multimodal features is vital to gather the requisite level of context
about how individuals interact with each other at any given time while complet-
ing the task. This leads to a set of deliberately-chosen requirements on individual
components to maintain tractability, generalizability, and robustness.

Fig. 7: Still of Group 1 from the Weights Task.
Potential communicative modalities in the scene
include but are not limited to, speech, gesture,
pose, action, gaze, and acoustics.

Figure 7 shows an exam-
ple of a single interaction in
the Weights Task. In this sit-
uation, there are many infer-
ences an AI agent could draw
about the current state of the
task. For instance, P1 and P3
are speaking and gesturing.
P3 says “one of these,” while
performing what appears to
be a grasp gesture (cf. [57]).
With hand and object detec-
tion to localize the blocks in
the working space, an agent
could infer that the group
is speaking about the red or

blue blocks. This could be used further determine if the overall statement made
by P3 is true, thus helping the agent understand the current progress toward
successful task completion. P2 is not speaking, gesturing or interacting with the
blocks, however the general direction of their gaze and forward-leaning pose in-
dicate they remain engaged in the task. P1’s statement “but I think it’s still 20,”
combined with certain cadence or prosodic patterns could signal P1’s confusion
or hesitation about the group’s current trajectory (cf. [5]). Leveraging the com-
bined modalities, such an agent would be able to maintain a relatively detailed
model of what is currently happening in the scene, from specific action-level
occurrences to the general level of contribution of each participant.

Additional design considerations concerning the exact methods that will
bring features together, in addition to how the participants will interact with
the agent, remain to be determined. A complete system should integrate imple-
mentations of 6DOF object recognition, action detection, expression recognition,
and pose estimation, and would open up the wide variation of AI-assisted CPS
to experimentation and evaluation, both from a human factors and multimodal
fusion perspective. For instance, emergent properties of group behavior with AI
assistance could be correlated to CPS skills displayed and other modalities pre-
dictive thereof, to determine the chain of events from individual behaviors to
dialogue moves to CPS indicators to outcomes, which could be communicated
back to the participants in real time.
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