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Abstract. The future of multimodal communication between humans
and AIs will rest on AI’s ability to recognize and interpret non-linguistic
cues, such as gestures. In the context of shared collaborative tasks, a cen-
tral gesture is deixis, or pointing, used to indicate objects and referents in
context. In this paper, we extend our previously-developed methods for
gesture recognition and apply them to a collaborative task dataset where
objects are frequently indicated using deixis. We apply gesture detection
to deictic gestures in the task context and use a “pointing frustum” to
retrieve objects that are the likely targets of deixis. We perform a se-
ries of experiments to assess both the quality of gesture detection and
optimal values for the radii of the conical frustum, and discuss the ap-
plication of target detection using pointing to multimodal collaborative
tasks between humans and computers.

Keywords: Deictic gesture · Gesture semantics · Multimodal dialogue.

1 Introduction

As artificial intelligence becomes more ubiquitous and sophisticated, users will
increasingly expect computers to behave more like humans. This includes the
capacity to understand not only common input modalities like language, but
also non-linguistic modalities such as gestures. A critical component of mul-
timodal human-human interaction is deictic gesture (pointing), and therefore
accurate identification of pointing targets in real time is an important feature
for multimodal language understanding and human-computer interaction. By us-
ing pointing vectors to aid in identifying targets in three-dimensional space, the
semantic denotata intended by a user can be extracted from a video stream. In
addition, when combined with other features, such as speech, the data extracted
can further aid the overall understanding of how humans are communicating
with one another or with an intelligent system. For the most accurate analysis
and seamless use, correctly and consistently identifying people, gestures, and
their intended semantic targets in real time is vital. We previously developed
a pipeline to automatically detect preparatory, “stroke,” and recovery phases
of gestures [26], based on the gesture semantics previously developed by the
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community [1, 9, 18]. Our method showed promising results in automatic identi-
fication of complex multi-frame gestures in real time, with lower computational
overhead than competing approaches.

In this paper, we incorporate this model into a pipeline that detects the
semantic target of pointing gestures, specifically. This serves as a direct oper-
ationalization of the pointing cone semantics of Kranstedt et al. [13], among
others. We demonstrate this capability in the context of a small group task
where people communicate with each other using both gesture and language
[10]. To effectively extract instances of pointing and the associated targets from
a small group scenario, a few things must be considered. First, accurate ges-
ture detection on a per-participant basis is necessary to consistently match the
pointing vector with who is communicating. Second, precision errors can occur
when a single vector is used to select objects, since it is unlikely that the objects
and vector line up perfectly. To account for this, a “pointing frustum” is formed
around the pointing vector to create a “detection” region in three-dimensional
space. Objects that intersect with this region, based on the center of the object
are selected as targets on interest [12]. As pointing specificity degrades with dis-
tance from the pointer to the target but is still interpretable by other humans at
a distance [25], selecting the most fitting near and far base radii for the pointing
frustum is important to correctly identify intended targets in a small space, with-
out selecting unintended targets. We compare an automatic pointing detection
method with a human-annotated ground truth, and frustum radii to determine
the feasibility of point and target detection of small objects. We establish a novel
baseline for object selection in a joint situated task using deictic gesture only,
and in the process expose how challenging automatic inference of indicated ob-
jects in a collaborative setting can be, due to variation across individuals and
groups in communication and deictic strategies. We discuss how target objects
detected through pointing can then provide important context to the automated
understanding and interpretation of interactions in a small group task, and how
additional features might help add more context to overcome inaccuracies.

2 Related Work

In various human computer interaction studies, pointing is a common gesture
used to indicate the intended target of a user or study participant. Use of point-
ing for deixis spans many different languages and cultures [11], making it an
ideal gesture to be integrated with HCI systems. Pointing may be used to exe-
cute hardware commands or interact with a user interface [7]. Pointing is also
an important feature of small group communication especially when combined
with speech, as it allows individuals to ground their utterances to the physical
environment around them, which adds critical context. For example, any use
of demonstratives (“this one,” “those,” etc.) to refer to physical entities must
almost necessarily be coupled with a deictic gesture to be interpretable.

While pointing can add useful context to communication, relying only on
non-verbal deictic gesture, such as pointing, does not always guarantee accurate
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target selection. Various experiments have been run to determine the potential
increase in accuracy of pointing when combined with other features, such as
speech [5]. In the mentioned study researchers experimented the effectiveness of
single plane pointing in an augmented reality, from various perspectives, with
and without speech. Participants were required to either point at or “identify”
(with pointing and speech) an intended target from various perspectives. They
found that combining speech and gesture, accuracy was increased, however there
were still errors selecting the intended target.

In [16], participants interacted with a virtual avatar using a combination
of gesture and speech in a shared construction task. Subjects were placed in
one of four conditions that varied the information presented to them and the
presence of physical cues in the environment that served as distractors. It was
found that users adapted the direction of their deixis toward the correct target
region, except in cases when explicitly misleading information about the role of
the surrounding physical environment was presented.

These studies and more follow from a history of gesture semantics that con-
tinues traditions of viewing gesture as either simulated action [6, 19] or a general
mode of reference [4, 28]. Lascarides and Stone [18] interpret gesture on the basis
of the co-perception of gesture and denotatum. This is critical for deictic gesture
in particular as the use of deictic gesture G presupposes that its interpretation
function JGK is also co-perceptible by the intended recipient of the gesture. Given
the typical use of deixis as an indicator of physical items, JGK readily resolves
to an item in the environment under this model. The gesture abstract meaning
representation (GAMR) language that we leverage in this paper [3] also builds
directly on Lascarides and Stone’s division of deictic and iconic gestures [17].

van der Sluis and Krahmer [25] studied deixis in the context of multimodal
referring expressions and found a main effect of distance. The decreased speci-
ficity of pointing over distance can be modeled as a “cone” a la Kranstedt et al.
[12]—a volume narrower at the vertex (the pointing digit) and wider as distance
from the digit increases. In this paper we experiment with a “pointing frustum”
(viz. a cone with the tip truncated) to create a region of detection around the
pointing vector. This combined with other features in a multimodal system may
further improve the accuracy of pointing as a means to select the intended target.

3 Methodologies

In this section we introduce our dataset, and the tools and methods used in our
experiments.

3.1 Weights Task Dataset

The Weights Task Dataset [10] (WTD) is a collection of audiovisual recordings
of a collaborative problem solving (CPS) task. Groups of 3 work together to
determine the weights of various small colored blocks using a tabletop balance
scale. The data comprises 10 groups, each including videos from 3 Azure Kinect
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RGBD cameras at different angles [2]. The participants do not know that weights
of the blocks follow an instance of the Fibonacci sequence, where each block is
the combined weight of the previous two smaller blocks. At the end of the task
the group is asked to determine the weight of one mystery block which, according
to the pattern, is the combined weight of the previous two blocks. The dataset
totals approximately 4 hours of recordings. Figure 1 shows an example still from
Group 1 and Group 2 of the Weight Task Dataset.

Fig. 1: Sample stills from Groups 1 and 2 of the Weights Task Dataset.

This dataset contains many different forms of real-world multimodal com-
munication in the course of the task-oriented collaboration, including but not
limited to speech, gesture, body language, and gaze. While these features exist
in each of the ten groups, the exact language and gestures used to communicate
can vary, often widely, between groups and even participants. In the domain of
deixis alone, for example, specific deictic gestures might range from gesturing
to a target with the entire hand to using one or more fingers, or even an ob-
ject like a pen, giving us diverse, challenging and realistic data to experiment
with. Additionally, the blocks themselves are quite small, at 1.5” (38.1mm) or 2”
(50.8mm) on a side, in a working space (table and chairs) that is approximately
5’ × 5’ (1.52m × 1.52m). Naturally, pointing with the fingers only (rather than
extending the entire arm) is the most common form of deictic gesture used to
indicate targets in this dataset. Thus pointing is an important feature that can
be used to select the intended target; deixis might be used to indicate objects
that are the subject of a current question or subgoal, or used to draw attention
of other group members to specific items, meaning that it is a potentially im-
portant predictor of how the collaborative task will unfold. Referring back to
Figure 1, in both examples participants are seen gesturing to a specific block,
using deictic pointing gestures.

Data Preprocessing A few data prepossessing steps were required in order to
test our proposed target selection solution using the WTD. Human-annotation of
frames in which pointing gestures occurred were gathered for a subset of groups.
This process involved manually stepping through each frame and marking a
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participant ID1 along with the start and stop frame for each deictic gesture.
For each manually annotated frame we also saved the block’s color, quaternion
describing its location, location in 3D Cartesian space, and 2D bounding box
information. This gave us a maximally precise object location in each frame
against which to assess the quality of object selection with automated deixis
detection compared to a human-annotated ground truth. From there we ran a
linear interpolation algorithm to fill in the object locations for the intervening
video frames. Figure 2 shows an example of the target blocks on the scale, with
and without the overlaid 2D bounding box drawn from the manual annotations.
Because of the time required to annotate each video, only a representative subset
of groups were selected for our experiments.

Fig. 2: Target blocks, with and without bounding box overlay.

3.2 Robust Gesture Recognition

In order to accurately determine both when a participant is pointing, and the
intended target of that point within in a scene, certain specific information needs
to be extracted from the video frame. Gesture recognition has previously been
treated as data-hungry computer vision problem [21], and while sophisticated
approaches like vision transformers remain state of the art, a high-throughput
experimental scenario like ours demands a more lightweight solution. In [8] we
demonstrated that our robust gesture recognition pipeline [26] displayed com-
petitive performance with much larger models on the gestures of interest in the
WTD using only automatically-extracted 6 degrees of freedom joint positions
instead of full pixel or depth channels.

Our method consists of a pipeline to automatically detect preparatory, stroke,
and recovery phases of gestures, using joint positions automatically extracted
from the video signal before classification [26]. Design choices when developing
that framework were based on the gesture semantics previously defined by the

1 Participants are conventionally indexed 1–3 from left to right in the video frame.
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community [1, 9, 18] (namely Kendon’s pre-/post-stroke hold formulation). Here,
we leverage that system to aid in determining when someone is pointing in order
to determine targets of interest in 3D space. Our pipeline which consists of
three stages—a static classification model, movement segmentation algorithm,
and phase breakdown—distills videos down to “key frames,” which we define
as the union of the pre-stroke, stroke, and post-stroke phases, where the most
of the semantically significant movement for a gesture takes place. In this use
case, these key frame span the semantically significant movement of pointing
gestures. Figure 3 shows the gesture detection pipeline, with the addition of our
steps taken for point based target detection.

The static classification model recognizes the general static shape of com-
plex gestures when in a hold phase. The movement segmentation routine aids
in breaking down a video into segments of similar movements. The phase break-
down uses the classification model and video segments to identify and classify
the segments and frames that are in a hold phase, and thus most semantically
significant, or adjacent to the most semantically-significant frames.

We hypothesize that for deictic gestures such as pointing, the “key frames”
dictate when a participant is not just pointing but also pointing toward the
intended target, thus lining up the object, reference point (in this case, the
body), and the frame of reference [20]. Using the output of our gesture detection
pipeline, we can determine which frames are candidates for containing pointing
gestures, and determine from there determine the intended target.

Fig. 3: Complex gesture and target detection pipeline. Items within the box
denote components already established in VanderHoeven et al. (2023) [26].
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3.3 MediaPipe

As mentioned, our recognition pipeline depends on automatically-extracted joint
positions rather than raw pixels, and these must be extracted using some off-
the-shelf software. Hand detection tools, such as MediaPipe, an open source
library developed by Google [29], support such gesture recognition methods by
performing this automatic extraction (see Figure 4). These joint positions, or
landmarks, of detected hands [29] can then be used to train custom gesture
recognition models such as ours with a wide range of applications.

MediaPipe has a few limitations that need to be overcome to handle more
complex scenarios with multiple participants. While MediaPipe has the ability
to return multiple hands from a single frame, the ordering of the hands is not
consistent and can vary frame to frame. Because of this, participants’ hands can
be mixed up, leading to inconsistent hand tracking. In Section 3.5 we detail how
we handled this issue.

Fig. 4: MediaPipe Hand Landmarks (reproduced from [29]).

3.4 Pointing Frustum

Leveraging MediaPipe and our robust gesture recognition pipeline, we can iden-
tify frames of interest for deictic gestures, and from there use the hand land-
marks to calculate a pointing vector to identify target objects in a scene. For
the purposes of our experiments we calculate our pointing vector by extending
a ray through the base and tip of the index finger, comprising the MediaPipe
landmarks at index 5 and 8, respectively. We then extend the vector out into
the environment 5 times the distance from finger base joint to fingertip, starting
from the tip of the index finger (joint 8). Figure 5 shows the joints used to create
the pointing vector relative to the MediaPipe landmarks.

When using a vector embedded within a single plane to detect targets of
interest, it is very unlikely that the vector and object of interest will line up
perfectly. Because of this, we use a “pointing frustum” to create a target detec-
tion region. A frustum is a geometric shape resembling a cone, where a radius
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Fig. 5: Pointing vector relative to MediaPipe landmarks.

Fig. 6: Top down view of the pointing frustum. The red block is an example of
an object that falls outside the detection region, the green block is an example
of an object that falls inside the detection region and would be marked a target
of interest.

value is set for the top and bottom of the cone. By using a pointing frustum
we can specify a “near” (or top) radius at the tip of the index finger and “far”
(or bottom) radius at the end of the pointing vector to allow increased granu-
larity when experimenting with detection regions. This reproduces the pointing
cone semantics of [12], and makes it extensible to allow for different levels of
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P⃗ = p2− p1

B⃗ = p3− p1

A⃗ =
B⃗ · P⃗
∥P⃗∥2

P⃗

x = p1 + A⃗

(1)

Fig. 7: Calculation of pointing vector target, where P represents the pointing
vector, p3 represents the center of a target object, and x represents p3 projected
onto P

imprecision at distance. Figure 6 shows a top down view of the frustum, noting
that in a real scenario, the frustum is a three-dimensional volume with circular
cross-sections. The red block in the figure denotes a target object outside the
detection region, whereas the green box is an example of a target of interest.
We determine if a target is in the detection region by first finding the location
of the target perpendicular to the vector, outlined in Figure 7. From there we
can find the radius of the frustum at that point and determine if the center of
the object is within that radius. This process is depicted in Figure 7 and Equa-
tion 1. x denotes the center of the candidate target object projected onto the
pointing vector (P ). rd = rn+

rf−rn

∥P⃗∥
∥A⃗∥ gives the radius of the pointing frustum

at distance ∥A⃗∥ from the “near” plane (where rn and rf are the near and far
radii, respectively). If the distance from the center of the candidate target to its
projection x is less than or equal to rd, the candidate lies within the pointing
frustum and is considered “retrieved.”

3.5 Azure Landmarks

In order to implement gesture recognition on multiple participants, additional
assurances needed to be built on top of the MediaPipe hand recognition [26].
MediaPipe includes the ability to track multiple hands but does not guarantee
the order of the returned hands. This means that participants’ hands can get
mixed up (for instance, if they overlap, or leave the frame and return), leading
to incorrect assignment and therefore gesture classifications and attributions.
For instance if participant 1 is pointing at the blue block, but the gesture is
associated with participant 2, the result would be inaccurate representations
of gestures within the scene. We therefore took the locations of joints on the
bodies of the different participants, which were extracted from the depth video
stream (see Figure 8). Using these, we calculated a bounding box on each of
the participants’ hands, to allow MediaPipe to retrieve the hand joints from a
localized area. By tracking the bounding box to the wrist joint according to
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Azure, we could more consistently associate hands (and thus complex gestures
and movements) with a participant.

Fig. 8: Azure body landmarks overlaid on a frame.

3.6 Depth Information

In addition to body landmark locations, the Azure SDK facilitates retrieving
framewise depth information. This depth information is saved as grayscale Z-
coordinate values for each pixel in field of view, measured in millimeters. Figure 9
shows an example depth frame, with a semi-opaque overlay of the RGB data. The
depth information allowed us to convert hand landmarks and object locations
between two-dimensional and three-dimensional space, thus allowing us to create
a pointing vector, and detect targets in three-dimensional space.

3.7 GAMR

Ground truth target object annotations are provided in the WTD in the form
of Gesture Abstract Meaning Representation (GAMR) annotations [3]. GAMR
annotations comprise up of four main parts, the gesture type, gesturer, semantic
content, and addressee. For the purposes of our experiments we focus only on
the deictic gesture type, or gestures that refer to a location by pointing. Figure
10 shows an example of a pointing gesture referencing a block. ARG0 denotes the
gesturer, ARG1 the semantic content of the gesture and ARG2 is the addressee or
intended recipient. Figures 11 and 12 show examples of GAMR annotations from
the WTD. Note that in, e.g., Figure 11, the gesturer (ARG0) is participant 1

and semantic content of the gesture (ARG1) is the blue block. We used this
information in conjunction with the targets selected by intersection with the
pointing frustum to verify if object selections were correct.
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Fig. 9: Azure Depth Data with RGB overlay

Fig. 10: Deixis GAMR template according to [3].

Fig. 11: Group 1 deixis GAMR example

4 Experiments

Our experimental protocol involved assessing the values of near and far frustum
radii that provided the best possible and most consistent object selection across
multiple groups. Relevant video frames that were tested against included those
which were annotated with GAMR type deixis-GA, and had been annotated as
containing a point gesture, or the gesture recognizer detected one. From there
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Fig. 12: Group 2 deixis GAMR example.

we assessed which objects intersected the pointing frustum. Per-frame recall,
precision, and F1 were calculated against the ARG1 of the GAMR annotation.
This repeated for each relevant frame and we kept a running average for each
metric across the entire video. In order to determine the number of correct
inferences and type I or type II errors based on selected blocks, we created the
following guidelines using the GAMR annotations:

– If ARG1 is a single block, if the selected block matches the annotation, it is
considered a true positive. If selected blocks do not match the annotation,
they are considered false positives.

– If ARG1 is a combination of blocks, such as when the GAMR annotations
did not specify a single block as the denoted target, but rather a set, each
selected block that matches a block in ARG1 is considered a true positive.
Selected blocks not contained in ARG1 are considered false positives.

– If a block included in ARG1 is not selected, it is considered a false negative.

The subset of groups we evaluated against included groups 1, 2, 4, and 5 of
the WTD (see Section. 3.1).

5 Results and Discussion

Table 1 shows the average F1, recall and precision across all 4 videos for differ-
ent combinations of radii, assessed against both the human-annotated pointing
frames and those retrieved by the automated gesture detection. It is worth not-
ing the variability in F1 scores; in many cases the standard deviation is almost
the same as the average. This indicates the challenge in selecting a single set of
frustum radii for the most effective target selection. Additionally, the F1 scores
over the the human-annotated frames and the automatically selected frames are
generally very similar, showing that our automated pipeline’s frame selection
achieves similar results when compared to human annotators.
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Table 1: Average target detection F1 for human annotated and automatically
detected frames from groups 1, 2, 4 and 5.

Near Far µ Human F1 σ Human F1 µ Auto F1 σ Auto F1

20 50 0.187 0.170 0.185 0.192

30 60 0.213 0.175 0.199 0.191

40 70 0.282 0.254 0.275 0.278

50 80 0.349 0.235 0.338 0.274

60 90 0.401 0.216 0.384 0.267

70 100 0.417 0.207 0.404 0.260

80 110 0.420 0.210 0.404 0.261

90 120 0.418 0.206 0.400 0.261

100 130 0.416 0.195 0.396 0.253

The relatively high standard deviations shown in Table 1 indicate the vari-
ation present across groups in the dataset. We also present group-wise results
showing the average metrics across all frames vs. the radius sizes. This provides
additional granularity in determining the most effective radius combination on
a per group basis, as opposed to selecting and testing radius combinations one
at a time.

Fig. 13: Incremental radius step example, Group 1.

Figures 13 and 14 show examples of the incremental radius steps, and show
how as the size of the pointing frustum grows, as the detected targets change.
Blocks outlines in green indicate those selected as targets of pointing. Red indi-
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Fig. 14: Incremental radius step Example, Group 2.

cates those not selected. Note that in Figure 14, as the radius grows the green
block is the only one ever selected. This is because the remaining blocks are
resting on the paper behind the scale, and are therefore behind the origin of the
pointing vector and the frustum’s near plane.

Figures 15a–15d show experimental results across a range of different near
and far radius combination for each group, averaged across all relevant frames of
the video. We compare metrics over those frames annotated by humans (ground
truth) and those where pointing gestures were detected by the automated detec-
tion pipeline (therefore comprising an end-to-end system with gesture detection
and target selection in a single step). Maximum F1 score is indicated with the
purple dot. The maximum F1 scores vary anywhere between 0.33 (Group 4) and
0.69 (Group 2). This range is likely due to variability in accuracy and style of
pointing as they are used by each participant/group. In addition to human in-
accuracy, pointing in such a small space is likely to return more than one object
as the radii grow. Because of this, as the frustum size increases we have the
potential to return more false positive targets. This is reflected in the increase
in recall as the radii grow, but the eventual decline in precision and F1.

In most cases, except Group 4, using the end-to-end system, where frames
were selected by the automated gesture pipeline, outperformed detection over
human annotations. In Group 5 particularly, the gesture pipeline frames eventu-
ally overtook the human annotated frames by about 0.1 F1 overall and thereafter
remained consistent. We hypothesize this may be because the automatically se-
lected frames are ones that the static classification model recognizes as a point
with the index finger. In Group 5, sometimes participants would point with pens,
or would gesture at the blocks using their entire hand. Overcoming this limitation
is another potential area for future work. In other groups the accuracy statistic
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of the human annotated frames more closely matches the automated frames,
indicating that the participants were more likely to point using the index finger
(as expected).

(a) Group 1 target selection statistics. (b) Group 2 target selection statistics.

(c) Group 4 target selection statistics. (d) Group 5 target selection statistics.

Fig. 15: Average precision, recall, and F1 for 4 test groups, averaged over all
frames. Solid lines indicate where frame selection was performed using the robust
gesture detection pipeline [26]. Dashed lines indicate where frame selection was
performed by human annotation.

6 Conclusion and Future Work

Deictic gestures are common in small group communication as a means to indi-
cate objects and referents in context. The ability to both identify deictic gestures,
such as pointing, and to identify their denotata in context is a critical capability
in interpreting multimodal communicative acts in situated physical shared tasks.
In this paper we leveraged a previously-developed pipeline to help automatically
detect semantically significant movement for a given gesture, and save off the
“key frames” for future use [26]. Here we leveraged that pipeline as a means to
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automatically detect pointing gestures, and created a pointing frustum based on
that information for target detection. The combination of our automated point-
ing detection and the pointing frustum showed promise as a means to detected
the intended target of a participant. Our detection pipeline preformed similarly
too, and in some situations better than, the human annotated ground truth an-
notation as a reliable and robust way of performing object selection via deixis
in challenging, real-world data.

There is room for improvement when it comes to the overall accuracy of target
detection, with the maximum F1 achieved across individual groups and a range of
radius combinations being about 0.69. Future work includes leveraging additional
context from other features, like speech, in a larger multimodal system to further
aid in narrowing down the exact intended target in a small space. Speech can
help provide a signal to select which of a set of objects is the true intended target.
It is important to emphasize here that in this paper target selection is conducted
using only deixis, and in the actual group task, pointing inaccuracies likely did
not hinder participants’ ability communicate with each other, as they relied
on additional communicative modalities, such as speech and gaze, to provide
additional context and information to each other. These additional features could
be used as tools to help further signal the true intended target from a group of
selected targets. For instance, this could be done by aligning the speech signal
with gesture for disambiguation, such as using language to select one among a
set of objects indicated through deixis, as done in [14, 15, 22–24].

Better accuracy in object selection using deixis may also be aided with the
addition of other features. For instance, objects that were the anchor of recent
actions (e.g., recently moved blocks) may be more likely to be a deictic target,
because partial information about them is more likely to be known after the
action. Therefore they may be more likely to be the denotatum of a spoken
demonstrative, and thus singled out with deixis.

Furthermore, we relied on human object annotations as the ground truth
against which to assess our performance. A true end-to-end system for target
selection via deixis would not only perform pointing detection and frustum con-
struction automatically, as we do, but also automatically detect the positions
of the blocks in the video. Object detection via methods such as 6 degrees of
freedom object pose would significantly reduce the preprocessing time required
to leverage our pipeline, allowing us to experiment on more real world scenarios.

Finally, when humans engage in collaborative problem solving (CPS) tasks
such as the Weights Task, multiple simultaneous communicative modalities are
implicated. The ability to detect gestures and make inferences about their mean-
ings is a critical capability for automated agents that support human-human
collaboration, as in real-time project teams or classrooms. Approaches need to
be lightweight and extensible to create tractable methods for interactive AI in
supporting a wider range of CPS tasks [27].
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