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Abstract. In co-situated collaborative groups, a challenge for auto-
mated interpretation of group dynamics is parsing and attributing input
from individual group members to process their respective perspectives
and contributions. In this work, we describe the necessary components
for such a system to handle multimodal, multi-party input. We apply
these methods over an audiovisual dataset of a co-situated collaborative
task called the Weights Task Dataset (WTD) to track individual beliefs
regarding the task. We find that combining audiovisual speaker detec-
tion (ASD) with utterance transcripts enables us to track individuals’
beliefs during a task. We show that our system succeeds in individual be-
lief tracking, achieving scores similar to those seen in dense-paraphrased
common ground tracking. Further, we demonstrate that a combination
of ASD and point target detection can be applied to transcripts for au-
tomated dense paraphrasing. We additionally identify where individual
components need to be improved, including ASD and task-belief identi-
fication.

Keywords: Automatic Belief Tracking · Co-Situated Collaboration ·
Multimodal Alignment

1 Introduction

Group collaboration, which is commonplace in educational environments and the
workforce, can be pleasantly productive or frustratingly inefficient for the group
members. This may be due in large part to the group dynamics: individuals may
feel disengaged or that they are unable to contribute and have their perspectives
heard, or the group dynamics may lead to confusion and a lack of mutual un-
derstanding. In recent years, there has been a growing interest in using artificial
intelligence (AI) systems to support groups in achieving productive collabora-
tion [17, 25, 36, 35]. An assistive agent can help moderate these experiences to
ensure meaningful collaboration between group members. For example, it may
modulate the dialogue to create opportunities for everyone to speak, help the
group work through disagreement, or detect when the group is behaving in a
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way counter to available evidence. However, introducing an assistive agent into
a multi-party setting, particularly a co-situated one, presents the inherent chal-
lenge of parsing the input from channels such as audio and visual signals and
correctly attributing it to the appropriate group member.

An example of this challenge can be seen in Figure 1. Here, three participants
are collaborating to detemine the weights of differently-colored blocks. Each
of the participants express distinct views and information. Because the setup
is captured by a single microphone, all utterances end up in the same input
stream. Thus, the single audio segment, which by default may be considered a
single “utterance” due to the continuous audio signal, needs to be parsed and
each individual utterance must be attributed to the contributing group member.
In this work we explore this challenge with a multimodal approach, using visual
cues to identify the active speaker as well as ground gesture with speech. We
then use that output along with a dialogue move classifier to determine the
task-relevant beliefs of each participant. Our goal is to model the beliefs that
are individually held by members of co-situated groups.

Fig. 1. Mapping multi-party input channels to individuals.
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In this work, we describe the necessary components for a system to han-
dle multimodal, multi-party input. We apply these methods over an audiovi-
sual dataset of a co-situated collaborative task called the Weights Task Dataset
(WTD) [15] to extend work presented in [17], which modeled only the group
common ground. Here, we model beliefs at the individual level, the intersection
of which, at a high level, constitutes the common ground.

Our approach creates a temporary representation of each group member
which can be discarded after processing. This can help an agent track con-
tributions and conflicts within the group without infringing on the privacy of
individual members. Take, for example, an instance where one group member is
not looking at the task area, and later has a disagreement rooted in something
said or done while they were not paying attention. Modeling at the individual
level enables pinpointing the cause(s) of diverging beliefs (cf. [23]). This paves
the way for a single agent to assist both groups and individual members.

2 Related Work

In previous work, researchers modeled online group collaboration [35, 36] and
decision making [13]. These are important indicators of group success, and an
AI can use them to infer opportune moments for intervention. However, in an
in-person scenario like that shown in Figure 1, which replicates a realistic envi-
ronment like a table in a classroom or office where people are not outfitted with
individual mics or specialized equipment, there are no longer dedicated audio
and visual inputs that can be used to individuate each person. Previous work
has explored interpreting inputs from group members - for example, Palmer et
al. [25] used body tracking to model engagement of face-to-face groups, but have
yet to incorporate speech.

A multitude of datasets have proliferated to facilitate the study of AI in
group settings. These include groups working together online, as in [14], as well
as in in-person meetings such as [6]. There also exist co-situated group datasets
where groups work to solve a given task. One example is the emergent leader
corpus, which explores roles in groups in a discussion-based task [33]. Another
example, and the dataset used in the current study, is the Weights Task Dataset
(WTD), which is a problem-solving task using blocks [15]. These datasets pro-
vide information for researchers to explore and compare results, furthering our
understanding of group behavior.

To better understand these behaviors, previous work explored frameworks to
identify collaborative behaviors [1, 10, 11, 38]. Some frameworks have split col-
laborative skills into cognitive and social elements [1, 11]. Others have described
these elements as intertwined, such as Sun et al.’s collaborative problem solving
coding framework [38], which identifies constructing shared knowledge, negoti-
ation and coordination, and maintaining team function as the main pillars of
collaboration. Another study took a broader look at collaborative skills and as-
sessment, finding that many students and adults lack proficient collaborative
problem-solving skills [10].
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The aforementioned frameworks have been applied to behavior modeling.
Some relevant studies rely on speech alone [28], while others rely on only video
[7]. Several studies have shown that speech alone can offer significant insights
into the group, but results can be improved with multimodal features and models
[5, 35]. Another study explored implementing an agent to assist in remote groups
using speech [36]. Further, group modeling has been used to predict performance
of groups [2, 22, 37, 39].

Recently, theory of mind (ToM) approaches [27] have been applied to auto-
mated and AI analysis of collaborative groups. Of note, Zhu et al. [46] propose
a simulation theory of mind (SToM), which posits that the underlying system
of understanding others’ mental states relies on our ability to maintain a simu-
lation or “mind reading” of it [9], and use that to explain and predict behaviors,
including beliefs, desires, and intentions (BDI). SToM finds its genesis in Shan-
ton and Goldman’s simulation theory and gave rise to AI research in multimodal
simulations, including collaborative agents [18, 19, 29–31], but these were limited
to peer-to-peer human-agent interactions, not group interactions. However, this
work laid the foundation for automated modeling of common ground in dialogue,
first in human-AI pairings [20], and then in groups of human collaborators [17].

Consensus-building is a critical component of collaboration because often a
group must agree on the current step of a task before proceeding. In this paper
and its immediate antecedents [17, 44], beliefs are a limited set of propositions
regarding the task at hand. These include goals, constraints, and possible so-
lutions. While Khebour et al. [17] made strides in tracking group agreement,
similar techniques have yet to be applied to capture individual beliefs. The
aforementioned studies demonstrate progress in the automated understanding
and interpretation of group dynamics, but they have yet to address the chal-
lenge of attributing multimodal signals to individuals within co-situated groups
for belief modeling. Thus, the import of this work becomes clear: an ability to
model individual beliefs allows an agent to identify conflict and misunderstand-
ing. A key requirement for this is aligning signals from multiple channels, such
as speech and gesture, to the corresponding individual. To address this challenge
we apply a combination of audiovisual speaker detection (ASD) and automatic
gesture recognition to attribute task-relevant assertions to the correct group
member, and evaluate on the tasks of dense paraphrasing and individual belief
tracking.

3 Definitions

Here we present important defintions we rely on in the remainder of this paper.
Subsequent uses of these terms should be assumed to follow these definitions.

– Evidence - Evidence allows an agent to make sensible decisions about its
situation [12]. Under a dynamic epistemic logic [4, 24], evidence creates an
accessibility relation between worlds X ⊂ W such that for a given current
world w accessible worlds X are those evidenced by w in their own unique
way.
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– Belief - Since it is possible to entertain evidence both for and against some
proposition p, belief in p arises when the evidence for p is sufficiently strong
that the set of worlds X accessible from w contain only propositions non-
contradictory to the contents of w.

– Individual Belief - Because we treat each individual as having their own set
of beliefs, it is possible for each actor to have their own unique mental model
M that is supported under the current world w. Further, because we don’t
have access to what evidence an individual is working with, we allow for
statements of p to immediately entail a (at least provisional) belief in p.

– Dense Paraphrase - To dense paraphrase an utterance is to decontextualize
it; that is, provide all of the necessary context within the sentence to fill in
missing information and reduce ambiguity [40, 41]. This is done by rewriting
the original sentence. We do this by replacing pronouns in a sentence with
the intended target.

– Statement - A statement occurs when a participant expresses a solution to
the task. Here, that refers to expressing the weight of a block.

– Accept - An accept occurs when a participant agrees with another partici-
pant’s statement.

4 Methodology

Our task is to take in audiovisual recordings of co-situated groups and output the
belief states of each individual task participant. Our problem statement follows
the format of common ground tracking (CGT) in multimodal dialogue [17]: for
each utterance, we extract the epistemic positioning expressed by it (statement
or acceptance) and the propositional content asserted, and use a set of closure
rules derived from epistemic modal and public announcement logics to populate
“banks” of shared evidence (EBank) and agreed-upon facts (FBank). The differ-
ence between CGT and individual belief tracking (IBT) is that the assumptions
governing the closure rules that modulate the contents of EBank and FBank per-
tain not to correspondences between statements and acceptances from different
people but to the epistemic state of individuals inherent in their own utterances.
Thus rather than separate banks for shared evidence and facts that depend upon
implicit or explicit agreement between multiple parties, we assume a single bank
of individual beliefs that implicitly corresponds to an individually-held evidence
bank.1 Our pipeline begins with manually transcribed utterances, audiovisual
speaker detection, and pointing detection. We combine these modalities for the
textual enrichment technique knows as dense paraphrasing (Section 4.4). We
then pass that output to a dialogue move classifier to detect statements and
1 Though counterintuitive, under van Benthem et al.’s neighborhood semantics [4]

where the belief and evidence operators [B] and [E] are the respective equivalents of
the modal operators □ and ♢, for a single agent a, belief that there is evidence for
φ ([B]a[E]aφ) is analogous to □♢φ (“necessarily possibly φ”). Since this entails that
there is some sequence of accessibility relations between the current w and a world
where φ holds, [B]a[E]aφ ⇒ [E]aφ.
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acceptances (Section 4.5), and a propositional extractor to identify claims being
made (Section 4.6). These undergo simple closure rules (Section 4.7) to perform
individual belief tracking. A visualization of our pipeline can be seen in Figure
2. We perform evaluations at several points in our pipeline, described in Section
5.

Fig. 2. Individual Belief Tracking pipeline.

4.1 Dataset

In this work we use the publicly released and IRB-approved Weights Task
Dataset (WTD) [15], which can be seen in Figure 1. This dataset contains 170
minutes of video, comprising 10 groups working together with a set of blocks
and a balance scale. The group’s first task is to identify the weights of the blocks
using the scale. For the following tasks, the scale is removed and they must
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identify a pattern to solve the remaining block weights. In this work we only use
data from the first task. The dataset also contains manual transcriptions of the
participants’ utterances, and annotations for common ground, when participants
make statements regarding the answers for the task, based on [46]. For example,
when Participant 2 says "The purple one is thirty", it is annotated as "S0358:
STATEMENT(P2, purple = 30)". When Participant 3 replies with, "Purple is
thirty, yeah", it is annotated as "AC0401: ACCEPT(P3, S0358)". We use these
existing annotations, focusing on the statements individuals made, to create in-
dividual belief banks. Groups 1, 2, 4, and 5 were annotated for block locations in
the video, for use in the point target detection model. The transcribed utterances
were also enriched with explicit mentions of the blocks in place of demonstrative
pronouns. For instance, if a participant said “So that one’s 20” while pointing
to the green block, the enriched utterance would be “So green one’s 20” (see
Figure 5). This constitutes a manual dense paraphrase (see Section 4.4). These
were dual annotated (Cohen’s κ = 0.88) and adjudicated by an expert.

4.2 Audiovisual Speaker Detection

Audiovisual speaker detection (ASD) is the process of attributing speech to
individuals in the frame using audio and visual features. For audiovisual speaker
detection, we used the Light-ASD model presented in [21]. We selected Light-
ASD based on its small size and complexity paired with high performance [21].
This model utilizes a visual encoder, an audio encoder, and a gated recurrent unit
to process audiovisual recordings and output frame-by-frame bounding boxes of
the active speaker. This model also provides scores for each speaker. Any score
of zero or higher is classified as speaking. An example of Light-ASD used on the
WTD can be seen in Figure 3. We use several methods to aggregate these scores
to retrieve utterance-level predictions. These experiments are further described
in Section 5.

Fig. 3. Example of Light-ASD over the WTD, showing Participant 1 (left) detected as
the active speaker while the other two participant are silent.
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4.3 Gesture and Body Detection

Gesture is an important form of nonverbal communication that can be used
to help add additional context group work tasks. By detecting and identify-
ing gestures, we can understand how individuals interact with each other and
the physical space around them. One form of gesture that occurs commonly in
group work are deictic gestures, such as pointing. To perform meaningful gesture
detection, we use the robust gesture detection pipeline target detection model
described in [42]. The pipeline uses MediaPipe [45] to detect 21 joint positions
across individual hands. These landmarks can then be fed into a classifier trained
to identify gestures of interest and used to find the average change in motion of
the hand, to then identify the key phases or frames of a gesture of interest. These
key frames can then be used in varying detail to help identify a target of inter-
est at any given timestamp, thus aiding in automatic detection of the intended
targets of an individual’s gesture. For pointing, this is achieved by extending a
vector through the index finger of the hand, and creating a detection region in
3 dimensional space using a conical frustum shape. Objects that intersect with
this region would be flagged as a potential target of interest [43] (see Figure 4).

Fig. 4. Example of object selection using recognized pointing gestures (reproduced
from [43]).

In order to associate deictic gestures and target objects with statements
made by an individual in a group, we need to track the locations of participants
throughout the group task. This is done by using the Azure SDK to return body
landmarks on a frame by frame basis. We can then use the less detailed hand
locations on the body to create a bounding box around each of the participant’s
hands. By tracking the general hand locations on each participant we are able
to more consistently associate gestures and targets with individuals, in addition
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leveraging these bounding boxes allows for more efficient hand tracking, by only
requiring MediaPipe to be run in a subset of the frame.

4.4 Dense Paraphrasing

Dense paraphrasing is the process of decontextualizing speech using other modal
channels such as gesture, action, or references to the environment and items
within it [40, 41]. In our case, we supplement speech with visual information
by replacing pronouns with their targeted objects. Manually dense paraphrased
utterances are included in the WTD annotations (Section 4.1), providing ground
truth, and we also experiment with automatic, gesture-based dense paraphrasing,
replacing demonstrative pronouns with the objects selected by automatically
detected pointing gestures, as described above. To align speech with gesture, we
apply dense paraphrasing using speech, speaker detection, and gesture detection.
Deictic gestures in particular allow individuals to identify targets or locations of
interest in 3 dimensional space. When deictic gestures align with statements that
use demonstratives such as "this" or "that" the ability to identify the intended
target of the gesture and associate it with the individual communicating is vital
to add context to speech. A schematic of this is shown in Figure 5.

Fig. 5. Example of dense paraphrasing.

4.5 Move Classifier

We use a classifier model to determine when an utterance is a specific dialogue
move. Here, we focus on statement and accept, since these are the two moves
considered in the closure rules (see Section 4.7). We use a slightly modified
version of the dialogue move classifier presented in [17]. This model sends the
target utterance—along with 3 prior utterances for context—through two linear
layers, and then a ReLU activation layer. That output is passed through a 512-
unit Long Short-Term Memory (LSTM) block. It is then passed through a linear
layer, a tanh activation, another linear layer, and then SiLU before the output
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layer, which classifies the utterace into statement, accept, or neither. All layers,
excluding the classification layer, were trained using a triplet loss with a margin
of 1. This was done for 200 epochs with a learning rate of 1e-4. Then, the
entire classifier was trained further with cross-entropy loss for 100 epochs with
a learning rate of 1e-3, and then 200 more epochs with a learning rate of 1e-4.
Hyperparameters were tuned based on a search using one group as validation and
another as test. We then used leave-one-group-out validation wherein we trained
10 instances of the model with 9 groups used for training and 1 group for testing.
We then averaged the resulting model performance across all 10 instances in
order to estimate the average performance of the model on an unseen group, as
well as the expected standard deviation on an unseen group.

4.6 Propositional Extractor

To effectively track individual beliefs in co-situated group interactions, we em-
ploy a propositional extraction model adapted from prior work on identifying
task-relevant assertions in collaborative discourse [44]. The propositional extrac-
tor follows a pairwise classification approach inspired by co-reference resolution
methods, where utterances and candidate propositions are jointly encoded using
a cross-encoder model. The cross-encoder assesses whether a given utterance ex-
presses a specific proposition by computing a contextualized similarity score. We
train the model using supervised learning, where ground-truth propositions are
labeled within manually transcribed utterances. The model is optimized with
binary cross-entropy loss, treating the task as a binary classification problem:
given an utterance-proposition pair, the model predicts whether the proposition
is entailed by the utterance. For our purposes, we only extract propositions if a
block or weight is mentioned. The model is trained for 12 epochs with a learn-
ing rate of 1e-6 for the transformer backbone and 1e-4 for the classifier head,
ensuring stable learning across data splits.

4.7 Closure Rules

We use logical closure rules to determine the behavior of belief banks when we
detect a statement or accept. We use closure rules modified from the descriptions
in [46], such that is an individual makes a statement, they can be assumed to
believe that there is evidence for it.2 When we detect a statement attributable
to an individual, we move the associated proposition directly into their belief
bank. If a participant agrees with a statement, that statement’s propositions
will also go directly into their belief bank. Take the aforementioned example of a
participant stating "The purple one is thirty", and another participant replying,
"Purple is thirty, yeah". The proposition "purple = 30" will be placed in both of
2 Following [17], we adopt similar public announcement logics a la Plaza and Bal-

tag [26, 3] and a public announcement operator !, such that given an agent
(here, participant) a, proposition φ, belief operator [B] and evidence operator [E],
[!φ]a[B]a[E]aφ ⇒ [!φ]a[E]aφ.
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their belief banks, due to one being a statement, and another an accept of that
statement.

5 Experiments

5.1 Audiovisual Speaker Detection

The Light-ASD model [21] for audiovisual speaker detection (ASD) makes pre-
dictions at the frame level. We conduct several experiments to apply these frame-
level predictions at the utterance level. For each segment, we use one of the
following methods to aggregate the frame scores:

1. Count: selecting the candidate with the most non-negative frames;
2. Mean: calculating the mean score;
3. Mean (Positive Only): calculating the mean while excluding negative

scores;
4. Sum: summing all frame scores; or
5. Sum (Positive Only): summing the scores while excluding negatives.

We also include a random guess baseline (“Guess”), where we generated a random
participant as our prediction. We evaluate our utterance-level predictions using
F1 score and accuracy compared to the ground-truth speaker labels.

5.2 Dense Paraphrasing

We compare ground-truth annotations of dense paraphrasing with the original
(non-dense paraphrased) transcript, and our automatic dense paraphrase ap-
proach. This allows us to verify whether the output of the automated process is
closer, equal to, or further away from the goal than the original text. We com-
pare only the utterances that contained a pronoun and at least one point target
object during the time of speaking. Thus these conditions only rendered Groups
1, 2, 4, and 5 fully evaluable (as only those groups have complete object annota-
tions). We evaluate the performance using cosine similarity of embeddings from
a pretrained Sentence Transformer model [32] for semantic comparison and Lev-
enshtein distance for literal comparison. This approach allows us to assess both
the semantic and token-level differences between the goal state and automatic
paraphrasing, as well as between the goal state and original transcripts.

5.3 Individual Belief Tracking

We conduct Individual Belief Tracking (IBT) experiments using the original
transcripts, manually dense paraphrased transcripts, and automatically dense
paraphrased transcripts described in Section 4.4. This is the final output of our
pipeline. Following previous work [17], we evaluate our system using the Dice-
Sørensen coefficient (DSC) [8, 34]. This method allows us to compare our final set
of propositions in each participant’s belief bank with the ground-truth banks. At
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this point we take the average score of each group. This shows how each method
performs on each group. Next, we pad the remaining dialogue steps by holding
the final score constant until all groups reach the max length of dialogue seen in
the data (141 dialogue steps). We then take the average of all groups at each step
to compare across conditions. This allows us to compare results of each method
as the group progresses.

6 Results

6.1 Audiovisual Speaker Detection

Out of our experiments, the best performing approach was to take the candi-
date with the largest sum of positive numbers. A paired t-test showed that this
approach yielded a significant improvement over a random guess strategy (α =
0.05, p = 0.04). The results of our experiments can be seen in Table 1.

Table 1. F1 and Accuracy Results for Light-ASD Experiments

F1 SD Acc. SD

Guess .267 .023 .250 .021
Count .306 .061 .335 .052

Sum .252 .055 .283 .051
Mean .252 .053 .282 .048

Sum (Positive Only) .320 .059 .347 .058
Mean (Positive Only) .318 .050 .345 .049

6.2 Dense Paraphrasing

The results of our dense paraphrasing experiments can be seen in Table 2. While
the cosine similarity between the dense paraphrase annotations and the auto-
matic dense paraphrasing is higher than that of the dense paraphrase annotations
and the original transcript, the Levenshtein distance is also higher. This means
that, while the automated approach results in sentences that were semantically
closer to the ground truth than the original transcripts goal, these were further
from the exact text. We should note, however, the very high standard deviation
in Levenshtein distance, indicating the wide range of variations between auto-
matically dense paraphrased sentences and their ground truth counterparts. An
example from the data allows us to further explore the results we see here: take
an instance of the original transcript being, "Ok so this one is probably twenty,
ten ten twenty". The manual dense paraphrase (ground truth) of this text is
"Ok so green block one is probably twenty, ten ten twenty". Using the auto-
matic dense paraphrasing method, we get the output "Ok so blue block, green
block, red block one is probably twenty, ten ten twenty". Here, the point target
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detection selected the blue block and red block in addition to the green block,
because they were close together in space. In this case, the automatic dense
paraphrase is semantically closer to the ground truth with a cosine similarity of
.865 compared to the original transcript at .646. This may be because it contains
the correct "green block" target. However, because the participant points to two
additional blocks (red and blue), there are extra objects added to the automatic
dense paraphrase, resulting in a larger edit distance of 23 compared to that of
the the original transcript (12).

Table 2. Comparison of transcripts and automatic paraphrasing against ground truth

Cosine Sim. SD Levenshtein Dist. SD

Transcript .766 .184 21.344 21.633
Auto DP .855 .146 21.500 24.496

6.3 Individual Belief Tracking

Our results show the best performance using the original transcripts with no
dense paraphrasing. Interestingly, using the manually dense paraphrased utter-
ances yielded the lowest scores across the board. These can be seen in Table 3.
Figure 6 shows the performance of the original transcript and the dense para-
phrase methods as participants progress through the task. We see, especially in
the original transcript method, an increase during the beginning and middle of
the task, and a slight decrease at the end of the task. As the size of the ground
truth belief bank expands, the predictions may start to drift away. This may
be due to the propositional extractor and move classifier continually admitting
items, as we see in Section 6.4. As a result, more false positives are introduced,
and the increasing number of true items creates more opportunities for false
negatives, leading to greater discrepancies.

Our results of the subsample (Groups 1, 2, 4, and 5) shows the original
transcript again outperforms the other methods, though the automatic dense
paraphrased method does perform better in Group 2 (see Table 4). We also
note that in Figure 7 the automatic dense paraphrasing shows a high increase
in the beginning of the task, performing similarly to the transcripts method in
the middle of the task, but faces a sharper decrease later in the task. Still, the
original transcripts method has outperformed the manual dense paraphrasing
and the automatic dense paraphrasing the majority of the time.

6.4 Error Analysis

To investigate the increased error seen with dense paraphrasing, we evaluated our
move classifier and propositional extractor. We found that the addition of man-
ual dense paraphrasing increased the total count of propositions by 12%. This
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Fig. 6. Results of Individual Belief Tracking using original transcripts and manual
dense paraphrasing (True DP).

Fig. 7. Results of Individual Belief Tracking using original transcripts, manual dense
paraphrasing (True DP), and automatic dense paraphrasing (Auto DP) over a sub-
sample of the WTD.
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Table 3. Average DSC of Individual Belief Banks by Group

Group Number
1 2 3 4 5 6 7 8 9 10 Avg.

Transcript .484 .143 .283 .384 .298 .381 .349 .600 .287 .287 .350
True DP .228 .091 .235 .368 .213 .259 .300 .346 .202 .193 .316

Table 4. Average DSC of Individual Belief Banks by Group

Group Number
1 2 4 5 Avg.

Transcript .484 .143 .384 .298 .355
True DP .228 .091 .368 .213 .245
Auto DP .418 .194 .330 .219 .299

reflects the addition of more task objects due to replacing the pronouns with
colored blocks. The propositional extractor will output a proposition whenever
a color or weight is mentioned. For example, "Let’s try this one" was manually
dense paraphrased as "Let’s try yellow block one". This resulted in the propo-
sition "yellow > green". This is a hallucination, as the utterance did not make
that claim. We additionally found that the move classifier detected statements
84% of the time, and accepts 16% of the time. This means the move classifier
was permitting 100% of propositions into the belief banks. The aforementioned
hallucination of "yellow > green" was subsequently added to the participant’s
belief bank. This type of outcome demonstrates the need for both the proposi-
tional extractor and the move classifier to be more resilient to negative cases,
where a proposition isn’t present and a statement was not made.

7 Discussion

Our results show potential for individual modeling in co-situated groups; how-
ever, they also underscore an opportunity for growth and improvement toward
that end. The audiovisual speaker detection model should be greatly improved
before deployment. Part of this may be working toward an utterance-based so-
lution, such as an audiovisual voice activity detection model for segmentation.
The automatic dense paraphrasing shows limited results, though it is closer se-
mantically to the target dense paraphrasing than the original transcripts. This
shows us that there is a meaningful signal there, but it’s not fully developed.
The original transcripts had the highest score on individual belief tracking. Sur-
prisingly, the manually annotated dense paraphrasing yielded the lowest score
on individual belief tracking. The added context overwhelmed the propositional
extractor; that, paired with biased predictions toward statements/accepts in our
move classifier, added extraneous beliefs which participants didn’t actually ex-
press. This is supported by the findings of our error analysis, showing more
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propositions detected than were made, and the move classifier permitting every
dialogue step as a statement or accept. This highlights the need for the propo-
sitional extractor to be robust to non-propositional utterances and for the move
classifier to reduce false positives. Still, our system shows promising results in
individual belief modeling.

7.1 Design Implications

Our work shows feasibility in this design approach while highlighting specific
areas in need of improvement for a successful system. We show that, while au-
diovisual speaker detection (ASD) is a route to speech attribution, the current
available frame-by-frame approach does not yield very high performance. This
component of the system may find more success in other approaches, such as
using utterance-based ASD. This also has the potential to work alongside the
automatic segmentation and speaker diarization. Further, this technique relies
on visual input; a better approach would allow for speaker diarization even with
the visual channel disabled. In addition to this, we find that the point-target
detection brings us semantically closer to target dense-paraphrased text. This is
notable as it allows for more grounding and context within the speech; audio-
visual systems should look for more ways to contextualize the speech channel.
However, we found that the dense paraphrased text hurt the performance of
our system. After analyzing the output, we found that both our propositional
extractor and our move classifier were sensitive to additional information. These
components should be more discerning in order to identify when a claim is being
made, and what that claim is. The move classifier in particular is meant to act
as a selective gate for what should be passed forward, but in our case passed
everything forward. This led to adding much more than the intended claims into
the belief banks. Therefore, we suggest future work to improve these components
of the system.

7.2 Privacy

User privacy is an important consideration in the design of assistive agents, such
as processing audiovisual input and tracking beliefs. It is essential that privacy is
prioritized throughout the design process, ensuring users have informed control
over their personal data. This includes what type of data is being processed
and how it is used. To this end, the deployed audiovisual system must provide
the ability to toggle each input modality on or off, allowing users to manage
their privacy preferences. Additionally, audiovisual data is never stored, further
protecting user privacy. Furthermore, the system is designed to respect users’
privacy by strictly limiting belief tracking to pre-defined options relevant to
the task and are not used for tracking participants outside the task context.
Irrelevant or off-topic belief statements are neither tracked nor stored, ensuring
that users’ unrelated personal information remains private and protected.
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8 Conclusion

In this paper, we described desiderata for an agent capable of modeling individu-
als in co-situated groups. We also presented experiments over our initial system,
and uncovered the potential of such an approach, as well as much opportunity for
future work. Overall, while we conclude this work is feasible, we also found that
our current approach leaves much to be desired in performance; from our results
we can see that much of this lies in the need for robust audiovisual speaker de-
tection at the utterance level. While our system runs offline, our methods could
be used to the benefit of real-time systems in similar tasks [16].

We should note some limitations to the scope and approach of the work
presented herein. Regarding the approach, we explored a frame-level audiovisual
speaker detection system for assigning utterances, and our methods for this were
relatively simple. Future work should explore an utterance-level approach to
audiovisual speaker detection. Given that, we did not apply audio-only speaker
diarization methods, which would be a desirable alternate condition to this work.
The automatic dense paraphrasing also inserted point target objects in place
of single pronouns, but future work should consider sentences with multiple
pronouns and objects. We also did not explore a combination of common ground
and individual beliefs in this work; future work should consider incorporating
both of these simultaneously to better understand the group dynamics and total
progression of the task.
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