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Abstract. Large Language Models are excellent at processing and ex-
tracting semantic information from text. However, to understand the
meaning of a real-world interaction, we often need to integrate additional
modalities, like gestures, body language, and other non-verbal cues. Here
we explore the difficulties that arise with the integration of real-time
multimodal processing in AI systems, we also emphasize the disparity
between human communication, which seamlessly incorporates multiple
modalities, and the current limitations of AI. In this paper, we exam-
ine existing works, identify their weaknesses, and propose novel methods
that aim to enhance the real-time integration of multimodal data. The
results we present indicate that improving AI systems’ ability to pro-
cess multimodal information can lead to apparent advancements in their
comprehension capabilities with dynamic and situated environments.

Keywords: Non-verbal features · real-time processing · Multimodal.

1 Introduction

In everyday communication, humans employ various modalities to convey in-
formation effectively. While language is often the primary and the most com-
monly used channel, in situated face-to-face interactions, non-verbal cues such
as gestures, facial expressions, body language, sign language and even intona-
tion play a significant role in complementing language and contributing to the
interpretation of meaning. These non-verbal cues usually provide extra context,
emphasize certain arguments, express emotional valence, or make communica-
tion more comprehensive. For instance, a simple gesture or a change in tone can
completely change the meaning of an utterance. However, non-verbal cues alone
are not always unambiguous or fully-specified, thus making it a challenge for
interlocutors to follow.

The field of NLP has made significant strides recently due to the rise of large
language models (LLMs), which learn to process and extract semantic informa-
tion using large-scale neural network training. It has become difficult today to
distinguish a conversation generated by an AI, or between an AI and a human
from a real conversation that took place between two humans. These AIs have



2 Khebour et al.

the ability to generate coherent and linguistically appropriate responses making
them valuable tools in a large variety of applications. But despite their outstand-
ing capabilities, LLMs still have a strong bias toward concepts and processes that
can be fully expressed in text. Even with the addition of images as a common
modality in most recent chatbots, linguistic (and specifically textual) represen-
tations still serve as the most common method of information exchange, which
poses a serious challenge when the AI has to interpret a real-word interaction
where multiple modalities come in to play. The human brain can effortlessly at-
tend to different modalities during a conversation, processing them in real-time
to understand the nuances of a dialogue. This skill allows a fluid exchange and
the ability to adapt to the changing context. Even modern AI systems find it
challenging to integrate real-time multimodal data, as they often require some
pre-processing or segmented data, and must keep track of the information being
exchanged.

We follow recent work in common ground tracking [12], which analyzes small
group collaborative dialogues and determines how each utterance affects the
shared knowledge of the group. This was demonstrated in the Weights Task
Dataset [11], which consists of videos of groups of 3 participants working together
to deduce the weights of differently-colored blocks (Fig. 1).

Fig. 1. Participant 2 is pointing at the block on the scale, with the task progression
displayed at the bottom right of the frame.

The problem of common ground tracking is one of inferring the common task
knowledge of a collaborative group, including the pieces of evidence shared in
common and the agreed-upon facts. These are denoted in Figure 1 as EBank and
FBank, respectively. For instance the contents of the purple square in EBank
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is interpreted as “there is evidence that the purple block weighs 30g, and there is
evidence that it doesn not weigh 20g.” The green square in FBank is interpreted
as “the group currently agrees that the green block weighs 10g” (according to
their speech and actions as interpreted by the automated system). The common
ground tracking system from Khebour et al. [12] was able to process a multitude
of other modalities such as gestures performed by the participants, the actions
undertaken with the different task-relevant objects, objects motion throughout
the task, the collaborative status of the participants following a Collaborative
Problem Solving framework [16], and prosodic features extracted using openS-
MILE [7] describing the voices of the participants and giving information on
their vocal tone. However, it was limited to running offline and postprocessing
recorded data given extensive transcription, annotation, etc. We recently devel-
oped an online (synchronous) version of the same system, but one that uses
speech features only. In this work, we integrate multiple non-verbal features into
sychronous common ground tracking and assess the comparative effect of each
on modeling the shared understanding of the group.

Through this exploration, we seek to contribute to the growing body of re-
search on multimodal AI systems, providing insights and solutions that could
pave the way for more advanced and natural Human-AI interactions in the fu-
ture.

2 Related Work

Multimodal AI is a prominent and wide-ranging subdiscipline that has captured
the interest of a wide segment of the research community. Initial well-known
approaches focused on the integration of text and images for tasks like visual
question answering and caption generation [9, 23]. More recent expansions into
other modalities have included speech, gesture, and physiological signals [21].
For instance, [14] shows how audio and video data could be combined using
deep learning to improve speech recognition accuracy.

Multimodal processing frequently entails challenges like human preprocessing
of heterogeneous data and asynchronous data streams. In [22], the authors try
to understand human intentions from videos by integrating natural language,
facial expressions and auditory cues. They highlight the difficulties in multi-
modal sequence fusion when dealing with temporal asynchrony and modality
heterogeneity. Meanwhile, [1] presents a two-stage emotion recognition model
that relies heavily on a preprocessing phase that encodes the original dataset
with different modalities. However, real-life communication is (almost) instanta-
neous and dynamic, all while integrating multiple modalities without the need
of preprocessing.

When it comes to tracking realistic human-human dialogue, many additional
factors must be taken into consideration. An AI model must keep in mem-
ory prior dialogues as they can hide additional and important context [5, 10,
13]. The AI system we use to evaluate the contribution of non-verbal features
addressed this particular challenge. The purpose behind the task of Common



4 Khebour et al.

Ground Tracking (CGT) [12] is to understand the flow of conversation between
a group of multiple people, while keeping track of information that has been
previously asserted [20], and determining what the group’s epistemic consensus
toward it is (that is, do they accept the proposition or not?)

Overall, this work addresses consequential challenges of working with mul-
timodal data such as with preprocessing, temporal asynchrony, dialogue state
and history tracking, and real-time performance. This study aims to address
the limitations identified in the aforementioned prior work, in order to develop
methods that empower AI and enables it to narrow the gap in Human-Computer
interactions.

3 Approach

Fig. 2. Diagram of the Trace system as used in this study.

The platform used to evaluate the contribution of non-verbal features in CGT
is known as Trace (TRAnsparency in Collaborative Exchanges). This system
ingests data from various audiovisual channels in order to keep track of the com-
mon belief among participants as they go through a collaborative task. Khebour
et al.’s original common ground tracking paper [12] is equivalent to an offline
version of Trace, and has a rich input feature set, including speech transcrip-
tions, gesture annotations, object annotations, prosodic features, and facets from
a collaborative problem solving coding framework. In this work, we incorporate
the full set of features used in the offline CGT task into the real-time version.
As some of these modalities were manually annotated, we extract each one auto-
matically while minimizing latency due to inference time, we fine-tune different
processing modules to improve the performance, and add additional features.

Trace considers each modality to be a separate input, and uses an un-
derlying dependency graph to ensure that one modality is processed through
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the system once all the features it may need have already been automatically
processed. This addresses the asynchrony issue, and is quick and optimized for
computation time because we do not process a feature unless a change in its
state has been observed. For example, if a model needs textual features, these
are only looked up if there is new speech coming in, whereas if the participants
remain silent, the speech transcription module will not be called. This method
allows Trace to track the conversation relatively quickly, enabling it to keep up
with the ongoing dialogue in real-time. As we add more (specifically non-verbal)
features, we remain faithful to this method. We evaluate the contribution of non-
verbal features by using the Weights Task Dataset [11], a shared collaborative
task where a triad must deduce the weights of differently-colored blocks with the
aid of a balance scale.

3.1 CPS Facets

Collaborative Problem Solving (CPS) facets are a way of representing different
dimensions of a group’s interaction as they contribute to successful problem-
solving in a team setting. We use the framework by Sun et al. [16]. Specifi-
cally, we used as features the CPS facets, or the highest level of this frame-
work’s hierarchy. These facets include constructing shared knowledge, negotia-
tion/coordination, and maintaining team function. Successful exhibition of these
facets in the course of an interaction are assumed to facilitate the exchange of
information, align team efforts, and ensure that all members’ opinions are consid-
ered, thus enhancing team function, encouraging collective understanding, and
enabling teams to tackle complex tasks which would have been challenging for
individuals to solve alone. A crucial aspect of CPS is that certain facets may
be expressed non-verbally. Intonation, facial expressions and body language all
play significant roles in conveying intent, emotion, agreement, confusion or other
significant indicators of the current state of the collaboration. These non-verbal
cues support verbal communication, making interactions richer, which improves
group performance. In this work, we use speech and prosody as input for a ran-
dom forest model, as first reported in [2], to infer the presence or absence of CPS
facets from an utterance.

3.2 Propositional Extractor

Propositions include the semantic content of an utterance that is relevant to
defining the state of the task. For instance, one of the participants may have a
relatively lengthy utterance that intends to propose a solution such as "I think
the blue block weighs the same as the red block is it’s also equal to 10 grams", in
this case the proposition expressed is blue = 10. A key problem in propositional
extraction from natural dialogues is that people may have radically different
ways of expressing the same underlying semantic content—they use filler words,
disfluencies, and have different idiosyncracies and preferences for expressing cer-
tain content. This problem was previously addressed by Venkatesha et al. [20],
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and we use their system as our propositional extractor. We also use the infor-
mation of presence or absence of a proposition as a feature for one of Trace’s
components (the move classifier—see below) as we observed a high correlation
between the feature and the type of move an utterance contains (STATEMENT,
ACCEPT, DOUBT).

Propositions are primarily extracted from speech transcriptions, as the se-
mantic content mostly resides in the words spoken. However, like CPS facets,
non-verbal features play a role. Due to the situated nature of the Weights
Task, a lot of information is expressed using aligned speech and gestures—
specifically demonstrative pronouns and deictic gestures (pointing). For instance,
green = 20 might be expressed by the utterance "I think that one’s 20 grams"
while pointing to the green block. In this case, the transcribed speech alone
will not enable the model to recognize which block the participant is referring
to. Thus we use a dense paraphrasing procedure [17] which decontextualizes the
reference by rewriting it with explicit information from other modal channels.
Under this transformation, "I think that one’s 20 grams" plus pointing at the
green block gets rewritten to "I think [green block]’s 20 grams."

3.3 Move Classifier

The move classifier from Khebour et al. [12] is designed to capture multi-
modal contextual information for the detection of STATEMENT, ACCEPT,
and DOUBT classes in dialogues. These classes indicate the epistemic position-
ing of the speaker toward the utterance, such that STATEMENT (p) is taken to
indicate the assertion of evidence for proposition p, ACCEPT (p) signals belief
in p, etc. The combination of propositions and the associated epistemic posi-
tions expressed by the utterances and other features are used to populate the
common ground of shared beliefs and evidence. The original architecture inte-
grates features from multiple modalities, including language, audio, actions, and
gesture-based inputs, processing them through modality-specific linear layers,
LSTMs, and finally a shared classification head. To address class imbalance dur-
ing training, the original paper employed SMOTE for oversampling, and used
triplet loss for pretraining followed by cross-entropy loss for fine-tuning.

In this work, we adopt the same base architecture with a few key modifica-
tions. First, we normalize the audio features derived from OpenSmile to ensure
consistent scaling, enabling their effective integration into the model. Addition-
ally, we enhance the LSTM layers by introducing ReLU activations after each
linear layer, improving non-linear transformations and providing greater flexi-
bility for learning temporal dependencies across utterances.

Gesture Processing We made substantial alterations to the handling of ges-
tures compared to Khebour et al.’s common ground tracking. The original ver-
sion uses Gesture Abstract Meaning Representation (GAMR) [4] annotations to
capture the interpretation of gestures in context as a meaningful input feature.
Previously, annotations from the Weights Task Dataset were used to train mod-
els to classify GAMR, however, since this method requires human annotators
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and preprocessing, this makes it unsuitable for use in a real-time system. There-
fore we avoid the need for human annotators by using RGBD to detect hand
movements [18]. We focus on pointing gesture due to their overwhelming preva-
lence in the data and the amount of salient context they carry relative to the
task. When one is detected, we look for the target of that gesture [19] among the
detected task-relevant objects (see Section 3.4). We then deterministically follow
the GAMR specification using the detected gesturer and target to construct the
GAMR annotation.

In the original CGT task, gesture features were encoded using k-hot repre-
sentations. We replace these with embeddings generated by an attention-based
graph encoder-decoder architecture (see Fig. 4). Gesture AMRs are naturally
represented as rooted, acyclic directed graphs, making this architecture a more
suitable choice compared to k-hot encodings for learning richer GAMR features.
In these graphs, nodes represent argument values (e.g., ARG0, ARG1, ARG2), and
edges define the type of relationships between these arguments. Specifically, ARG0
represents the gesturer, ARG1 represents the content of the gesture, and ARG2
represents the recipient of the gesture. The gesture type itself serves as the root
node, while the argument values act as leaf nodes (see Figure 3). Each leaf node is
connected to the root node through bidirectional edges, allowing the leaf nodes
to learn not only from the root but also from their neighboring nodes. This
bidirectional connectivity ensures that the embeddings effectively capture both
local and global dependencies within the graph, enhancing the representation of
gesture semantics.

Fig. 3. A GAMR annotation represented as a structured semantic graph.

Graph Autoencoder Architecture We adopt the attention-based message
passing mechanism, EdgeGAT, from [24] to construct the encoder. For each
node in the graph, attention scores are computed for all neighboring nodes by
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Fig. 4. Attention based graph encoder-decoder architecture.

concatenating node and edge features, passing them through a fully connected
layer, and applying Leaky ReLU followed by a softmax function. The neighbor-
hood information is then aggregated using these attention scores, normalized,
and combined with the original node feature, weighted by a parameter λ.

The encoder consists of three layers of EdgeGAT, each followed by ReLU
activation except for the last. The model processes nodes in batches while retain-
ing their graph membership. This ensures that node embeddings are computed
jointly but still associated with their respective graphs, allowing for meaningful
graph-level representations.

The decoder reconstructs the adjacency matrix A from the learned node
embeddings, where the reconstructed adjacency matrix is given by:

Â = σ(ZZT ), (1)

where Z is the matrix of node embeddings from the final EdgeGAT layer,
and σ(·) is the sigmoid activation function.

The model is trained using leave-one-out cross-validation with an edge-based
loss formulation. We treat observed edges as positive examples and randomly
sample non-existing edges as negative examples. The reconstruction loss is de-
fined as the binary cross-entropy loss:

L = − 1

|E+|
∑

(i,j)∈E+

log Âij −
1

|E−|
∑

(i,j)∈E−

log(1− Âij). (2)

Here, E+ represents the set of positive edges (existing connections), and E−

denotes the set of sampled negative edges (non-existent connections).
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During evaluation, we obtain the GAMR feature representation by aggregat-
ing node embeddings via average pooling:

g =
1

|V |
∑
i∈V

hi, (3)

where V denotes the set of nodes in the GAMR graph and hi denotes the
embeding of the i-th node. This pooled graph-level representation serves as the
final feature vector for downstream multimodal learning tasks.

3.4 Object Detector

Data Augmentation Challenges of object detection in our scenarios include
the diversity of positions, light conditions, and occlusions of the colored blocks. In
collaborative tasks such as the Weights Task, the task-relevant objects are usu-
ally located at the center of the task area (here, the table), roughly equidistant
to all participants. This means that in most object annotations, they remain sta-
tionary or there are non-significant changes in their positions in the image frame.
In addition, the colors of the blocks may appear different when they are shad-
owed, e.g., covered by the participants’ forearms when they point or reach toward
another block. Additionally, participants’ hands frequently occlude blocks when
they interact with them, or blocks are occluded by other blocks when placed close
together. These factors induce annotation biases which are then transferred to
the object detection model trained over those annotations, resulting in missed
object detections.

Table 1. Number of Frames on Various Light Conditions

Light Condition Blocks on Table Blocks on Scale

Full Lights 53 56
Half Lights 53 78
Natural Light Only 60 49

Table 2. Number of Frames on Various Gestures

Gesture Blocks on Table Blocks on Scale

Pinch the center of block 15 12
Pinch the top of block 20 9
Cover the top of block 14 14
Put the blocks on palm 13 -
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Fig. 5. Additional data collection in variant light conditions.

To overcome the challenges, we collected data on additional samples of corner
cases to achieve a more robust model generalizable to various conditions. The
additional data was collected twice for different purposes. The first additional set
was for sampling light conditions, and the second set targeted occlusions from
diverse interactions. Both sets contain frames of the blocks placed on the table
and the scale, as occurs in the actual Weights Task. The blocks-on-scale scenario
contained many cases of occlusion induced by stacking blocks horizontally and
vertically. In addition, we changed the positions of the blocks and scale in every
case to have various object positions in each frame.

The first set of augmented data was collected with varied light conditions:
full lights, half lights, and natural lights (Figure 5). Table 1 shows how many
frames were gathered in the different lighting conditions. In the second set, we
sampled four different gestures to address occlusions during interactions. The
four gestures included four mainly used in the collaborative task: pinching the
center of block, pinching the top of block, covering the top of block, putting the
blocks on palms. Table 2 shows the number of samples for various gestures.

The additional data was annotated using SAM2 in the CVAT annotation
tool.

Object Detection Model The object detection model used was the torchvision
implementation of the Faster R-CNN [15] model (fasterrcnn_resnet50_fpn).
Faster R-CNN uses a backbone network to generate feature maps, in our case
this is a ResNet-50 feature pyramid network. Then a smaller convolutional net-
work, referred to as the region proposal network (RPN), slides over the feature
maps from the backbone network and generates bounding-box proposals. The
RPN region proposals are then fed into a Fast R-CNN [8] detection network that
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Fig. 6. Additional data collection of blocks under different gesture interactions. The
images in this figure have been cropped for better visibility.

ultimately outputs the predicted bounding boxes. In addition to the bounding
boxes, the model outputs confidence scores during inference for each predicted
bounding box, and we take the bounding boxes that have the highest confidence
scores for each class. Due to the ability of the RPN to generate region proposals
quickly, Faster R-CNN is a suitable model for detecting objects in real-time.

The fasterrcnn_resnet50_fpn model is pretrained on ImageNet-1k [6], and
is then further fine-tuned on 300,000 frames from various groups in the Weights
Task Dataset (WTD), 5,428 frames from a private demo of the Weights Task,
and on the extended light conditions and gesture data described in Section 3.4.
The model is fine-tuned for 10 epochs on each set of extra training data us-
ing two RTX 3090 GPUs. A test set consisting of 1,786 frames from a sepa-
rate private demo of the Weights Task is used to measure the performance of
the fasterrcnn_resnet50_fpn. For each fine-tuning stage, Table 3 shows the
global mean average precision (mAP), mAP at an intersection over union (IoU)
threshold of 0.5 (mAP50), mAP at an IoU threshold of 0.75 (mAP75), and mean
average recall for the model’s top 10 predictions based on the confidence scores
(mAR10). The mAP metric takes the mean of the average precision for each class
at IoU thresholds ∈ {0.5, 0.55, . . . , 0.95}. The base fine-tuning stage represents
the model weights after being fine-tuned on the WTD and the private demo
data, and the following stages (light conditions, gestures, and light conditions +
gestures) are further fine-tuned using the base stage as a starting point.

4 Experiments and Results

Let us first recap and expand the explanation of the common ground tracking
(CGT) task. CGT involves identifying the shared beliefs among participants in
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Table 3. Faster R-CNN Fine-tuning Performance

Fine-tuning Stage mAP mAP50 mAP75 mAR10

Base 0.3843 0.7107 0.3698 0.4385
Light Conditions 0.4626 0.7578 0.4976 0.5725
Gestures 0.4477 0.7565 0.4467 0.5767
Light Conditions + Gestures 0.5100 0.7472 0.5652 0.6337

a task-oriented multimodal dialogue. The input features (here including speech
transcriptions, prosodic features, gestures and actions) contribute to the pre-
diction of epistemic positions (or “moves”; Section 3.3) communicated by each
participant. These are classified into STATEMENT, ACCEPT, and DOUBT. A
set of logical closure rules help construct the final common ground structure,
as they direct the expressed propositions into the right bank, or level of belief.
These banks are 3 in total:

– Question Under Discussion Bank (QBank): Contains the current set of ques-
tions or topics that participants are actively seeking to solve. A DOUBT of
a weakly evidenced proposition p may return p to the status of a question
under discussion (QUD), though this does not occur in the WTD dialogues.

– Evidence Bank (EBank): Holds propositions for which there is support but
not necessarily agreement. A STATEMENT of proposition p introduces ev-
idence for it into EBank. A DOUBT of proposition p if p is already in
FBank moves p back down to EBank.

– Fact Bank (FBank): Holds propositions that all participants believe in and
have accepted. An ACCEPT of p if p is already in EBank, moves it to
FBank. DOUBTs may remove propositions from FBank and send them
back to EBank.

To investigate the contribution of each modality, we designed our experiments
in a way that isolates them depending on the salient input channels. See Table 4
below. For certain experiments, we assume access to the “ground truth” (human
annotations) for certain channels:

– Ground Truth Speech: Experiments using these use ground truth speech
transcripts.

– Ground Truth Gesture: Experiments using these use the manually annotated
GAMR representations of participants’ gestures during the interaction.

– Ground Truth Object: Experiments using these use the manually annotated
coordinates of the bounding boxes for the objects.
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Table 4. Experiments with additional modalities and evaluation features (speech tran-
scripts feature is always included and so is not shown here, e.g., Experiment 1 is an
automatic speech transcription-only baseline).

Experiment
No.

Dense
Para-
phrase

Ground
Truth
Speech

Ground
Truth
Gesture

Ground
Truth
Object

Prosody CPS Proposition GAMR

1
2 X
3 X X
4 X
5 X X X
6 X X X X X
7 X X X X
8 X X X X X X
9 X X X X X

We use Sørensen-Dice Coefficient (DSC) as our primary metric. DSC is an
IoU-style metric that normalizes for the sizes of the sets being compared. This
is also the primary metric used in Khebour et al.’s original CGT paper [12]. The
test dataset is composed of 4 videos out of the 10 that exist in the Weights Task
Dataset. These videos (Groups 1, 2, 4, and 5) contained ground truth annotations
for all the relevant modalities, enabling a complete suite of experiments. We use
a leave-one-group-out experimental format where models were trained over all
but one group and evaluated on the remaining group. We calculate the average
DSC for each one of the 4 test groups, then we compute the average across those
4 values.

Experiment 1 provides a baseline using only automatically-transcribed speech.
Experiment 2 shows the maximum utility of speech alone, as we use the ground
truth data. Experiments 1 and 2 show that with automatic transcriptions (Ex-
periment 1), the models can get almost .40 DSC for F ∪ E, and that is over 83%
of the potential of speech when using ground truth.

Table 5. Experimental results averaged across test groups. F ∪ E denotes the union
of FBank and EBank [12] and this serves as a proxy for extraction of the correct
propositional content even if the level of evidence assigned to it is incorrect. Bold
shows which feature set performed best for each bank.

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9

Average QBank DSC 0.583 0.592 0.608 0.575 0.583 0.560 0.559 0.563 0.515
Average EBank DSC 0.189 0.159 0.168 0.179 0.208 0.127 0.213 0.170 0.160
Average FBank DSC 0.057 0.069 0.146 0.065 0.046 0.082 0.100 0.166 0.129
Average F ∪ E DSC 0.397 0.477 0.514 0.373 0.443 0.429 0.411 0.378 0.324

Experiment 3, which uses ground truth speech and dense paraphrasing with
automatically-detected gestures and objects, shows the maximum performance
on QBank and FBank and the utility of dense paraphrasing. However, Ex-
periment 4 shows that noise in the automatic speech recognition does have an
impact, and reduces performance on F ∪ E by about 27%. With Experiment
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5, we see that if we remove the ground truth of the speech and replace it with
the ground truth for both the objects and gestures features, the model’s per-
formance slightly drops, thus proving that speech remains the most important
feature, as the context and information it encompasses are far greater than what
the pointing gestures and objects do alone.

Experiment 6 adds more non-verbal features linked to the move classifier, but
with ground truth speech, while Experiment 7 uses the same features without
the ground truth data speech. Here, performance is similar between the two,
showing the impact that features like CPS facets, propositions, and prosody
can have even with noise introduced by automatic extraction methods, in that
they largely allow the model to close the gap with the ground truth induced
by the automatic speech transcriptions. This shows a faster path for model
optimization; while several works have shown that increasing training data size
in AI models is crucial for performance increase, this result suggests that in a
task such as CGT, increasing the number of available modalities may also help.

In Experiments 8 and 9 we introduce the GAMR representation into the
move classifier. Here, we see a decrease in performance compared to the previ-
ous experiments. We also see that the model’s limits using ground truth data
(Experiment 8), takes a hit as well. When we average the DSC values from Ex-
periment 9 and compare them to those in Experiment 8, we see that the model
operates at 88% of its capacity, which is higher than the 75% capacity of the
model at Experiment 2, but lower than the capacity found at Experiment 7. This
can be explained by the sparsity of the GAMR annotations. In fact, real-time
Trace only extracts 8 GAMR annotations from all 4 test groups, compared to
the 326 GAMR features we find in annotations of the same 4 groups; all of these
are at the disposal of the offline version, but not the real-time version.

There’s a noticeable decrease in performance when we compare Experiment 1
with Experiment 9, even though we added more modalities. This is very different
from the results from Khebour et al. [12]. In that version, we see a mix of trends,
but the decreases are not as big as with Trace in real-time. In offline CGT the
general trend across the test groups and all 4 values of DSC, is a drop of 1%
when more modalities are used, whereas the live model shows an 8% drop. This
is explained by the sparsity of the additional modalities in the move classifier.
These features also go deeper into the model compared to the dense paraphrase,
the outputs of which impact many other components of the Trace, further
indicating the data sparsity issue. The best performing experiment that did
not use any ground truth data is Experiment 7, which used automatic speech
transcriptions, dense paraphrases with ASR transcripts, automatically detected
pointing gestures, and automatically-detected objects, as well as prosodic, CPS,
and propositional features. This indicates a plausible best feature set for future
work in real-time common ground extraction. GAMR features may also still have
utility in a less-sparse data condition.
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Table 6. Average DSC cver test groups (calculated from [12]).

Modalities Qbank Ebank Fbank F ∪ E

All modalities 0.714 0.535 0.313 0.851
Speech only 0.725 0.551 0.184 0.928

5 Conclusion

Many works from multiple subdisciplines have shown the importance of multi-
modality at the intersection of HCI and AI. In this paper we presented the effects
of adding more modalities to a real-time multimodal common ground tracker, we
have seen that the more modalities we add the more a model is able to approach
its limit in performance. We have also proven the necessity for the additional
modalities to be as continuous as they possibly can be. The more a modality is
sparsely represented relative to another set of modalities, the imbalance creates
too much noise for the model to extract the proper features.

We’ve also seen how that cost an important requirement in data quality which
is modality balance, as some modalities have become sparser. This motivates us
to investigate other modalities that are present in as many individual frames as
possible, such as eye gaze, body pose, and the addition of more task relevant
objects such as the scale used in the Weights Task (e.g., whether it is tipping
to one side or the other and how that correlates with participant utterances or
informs their beliefs). While the GAMR embedding features in our experiments
proved too sparse to be truly useful, future work could examine how more con-
tinuous gesture features may impact performance of offline CGT, or how they
may be contributing other information to the interaction such as level of engage-
ment. We also focus only the common ground, or set of shared beliefs, without
attributing these to individuals [3].
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