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Abstract

Multilingual Language Models (MLLMs) exhibit robust cross-lingual transfer capabilities, or the ability to leverage
information acquired in a source language and apply it to a target language. These capabilities find practical
applications in well-established Natural Language Processing (NLP) tasks such as Named Entity Recognition
(NER). This study aims to investigate the effectiveness of a source language when applied to a target language,
particularly in the context of perturbing the input test set. We evaluate on 13 pairs of languages, each including
one high-resource language (HRL) and one low-resource language (LRL) with a geographic, genetic, or borrowing
relationship. We evaluate two well-known MLLMs—MBERT and XLM-R—on these pairs, in native LRL and
cross-lingual transfer settings, in two tasks, under a set of different perturbations. Our findings indicate that NER
cross-lingual transfer depends largely on the overlap of entity chunks. If a source and target language have more
entities in common, the transfer ability is stronger. Models using cross-lingual transfer also appear to be somewhat
more robust to certain perturbations of the input, perhaps indicating an ability to leverage stronger representations
derived from the HRL. Our research provides valuable insights into cross-lingual transfer and its implications for
NLP applications, and underscores the need to consider linguistic nuances and potential limitations when employing
MLLMs across distinct languages.
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1. Introduction

Multilingual Language Models (MLLMs) such as
MBERT (Devlin et al., 2019) and XLM-R (Conneau
et al., 2020), demonstrate strong cross-lingual
transfer abilities for downstream tasks (Hu et al.,
2020). Cross-lingual transfer leverages informa-
tion from a source language, improving perfor-
mance in target languages, which often leads to
impressive performance on the same task in other
languages. This can be particularly beneficial for
NLP task performance in low-resource languages
(LRLs). Pires et al. (2019) first observed this phe-
nomenon for NER and POS tagging tasks. Con-
currently, Wu and Dredze (2019) also demon-
strated MBERT’s cross-lingual transfer ability on
tasks such as Document Classification, Natural
Language Inference, and Dependency Parsing.
However, challenges persist in instances of

common tasks like NER, even for allegedly “gen-
eralist” models like ChatGPT (Wu et al., 2023; Qin
et al., 2023). Zero-shot learning may sometimes
rely on “vocabulary memorization” rather than true
language understanding (Patil et al., 2022), and
determining whether and why this is the case on
specific tasks remains challenging due to linguis-
tic variations and domain-specific differences.
Recent research highlights sensitivity of NLP

tasks to minor input changes, in contrast to eval-
uating against fixed gold standard (Gardner et al.,
2020).
In this paper, we evaluate specifically the extent

to which MLLM performance on a high-resource
language (HRL) can be expected to transfer to a
LRL that shares vocabulary similarity due to areal
or genetic proximity, or linguistic borrowing, and
the extent to which this assistance in performance
is robust to input changes that are driven either by
particulars of the task, or by semantic similarity.
Hence, we explore the following questions in

this paper:

• How does the accuracy of zero-shot learning
change when introducing minor variations to
the original test input?

• What impact do language features, such as
vocabulary overlapping, have on zero-shot
learning?

Our novel contributions are as follows:

• We conducted four perturbations to evaluate
NER models’ robustness in zero-shot learn-
ing across 21 languages. The two most cru-
cial methods included replacing named enti-
ties shared between the HRL and the LRL
with entities unique to the LRL, and modify-
ing surrounding words to assess cross-lingual
adaptability.

• We created a comprehensive section title
dataset for 21 LRLs and performed two pertur-
bations on section title prediction tasks: first,
by substituting the common words between
source and target languages with unique



words in the target languages using the co-
sine similarity function, and second, by choos-
ing substitutions randomly.

• We assess the relationship between vocab-
ulary overlap, cross-lingual transfer robust-
ness, and adversarial perturbations.

Our code and novel datasets can be found at
https://github.com/csu-signal/xlingual-robustness.

2. Related Works

Recent NLP models on common tasks, such
as NER, have exhibited remarkable performance
on well-established benchmarks with standard
train/dev/test splits. Despite recent calls for alter-
native evaluation approaches like random splits,
multiple test sets, and the introduction of a ”tune-
set” (van der Goot, 2021; Gorman and Bedrick,
2019; Søgaard et al., 2021), these suggestions
have not significantly influenced NER research
practices (Vajjala and Balasubramaniam, 2022).
While some papers conduct experiments on mul-
tiple datasets (Bernier-Colborne and Langlais,
2020; Ushio and Camacho-Collados, 2021), they
still primarily present results based on the stan-
dard splits of each dataset. Although a few pa-
pers acknowledge variance across multiple train-
ing runs (Strubell et al., 2017), there is limited
analysis of howmodel performance changeswhen
subjected to non-standard splits or when using
slightly modified test sets for NER evaluation.
Even top-performing NLP systems face significant
performance drops with minor input alterations
across various NLP tasks (Gardner et al., 2020).
Adversarial data creation for NLP mainly in-

volves surface-level text modifications, such as in-
serting, deleting, or swapping words, characters,
or sentences (Gao et al., 2018; Ribeiro et al., 2018;
Jia and Liang, 2017). Alternative strategies have
been explored, such as paraphrasing (Iyyer et al.,
2018) and generating text with semantically anal-
ogous content using neural models (Zhao et al.,
2018; Michel et al., 2019). Some approaches
involve human-in-the-loop interventions (Wallace
et al., 2019).
The ROCK-NER method performs adversar-

ial attacks by replacing original entities with
ones from Wikidata and then using a pre-trained
masked language model like BERT (Devlin et al.,
2019) to generate context-level attacks. Their ex-
periments reveal a significant performance drop
under perturbation, indicating that models memo-
riz entity patterns rather than performing true rea-
soning based on context.
Vajjala and Balasubramaniam (2022) introduce

six new challenging adversarial test sets for eval-
uating NER, focusing on the English language.

These sets are created using the Faker library1,
and they pose distinct challenges. Models exhibit
varying performance across NE categories and
specific entity types, and introduce potential racial
and gender biases in NER models. However, the
focus on such studies on English overlooks how
adversarial inputs can affect NLP for other less-
studied, lower-resource languages, and so solu-
tions to them may also privilege English and other
well-studied languages.
Calix et al. (2022) performed name replacement

using different languages as what has been done
in Vajjala and Balasubramaniam (2022) for 8 for-
eign languages. Additionally, Srinivasan and Vaj-
jala (2023) investigate input alterations in English,
German, Hindi, emphasizing how predictions can
differ with slight changes. This reveals inconsis-
tencies in NER model robustness. For German
and Hindi, combination of masking and random
datasets show the most significant performance
drop.
This paper further investigates multilingual

model fine-tuning and its robustness to adversarial
input perturbations. We compare native LRL mod-
els to those performing cross-lingual transfer from
an HRL, and examine the relationship between vo-
cabulary overlap, cross-lingual transfer, linguistic
and structural factors, and adversarial robustness.

3. Datasets

Our exploration focuses on 13 language pairs
from a pool of 21 languages: Arabic/Farsi,
Arabic/Hindi, Czech/Slovak, Dutch/Afrikaans,
English/Scots, English/Welsh, French/Breton,
French/Occitan, Indonesian/Malay, Italian/Sicilian,
Spanish/Aragonese, Spanish/Asturian, and Span-
ish/Catalan. These languages were chosen
following the rationale established by Nath et al.
(2022) for collecting loanword data: languages
with a sufficiently high density for evaluation,
with varying levels of expected vocabulary over-
lap. While Nath et al. (2022)’s data source is
Wiktionary, we examined the WikiANN dataset
(Pan et al., 2017), a common multilingual NER
dataset, and selected language pairs consisting
of one language with greater resources in the
data and one with fewer resources, where a
substantial level of overlap in the vocabulary
should be expected due to the languages hav-
ing some areal (e.g., French/Breton) or close
genetic (same sub-family) relationship (e.g.,
Czech/Slovak), or known history of borrowing at
large scale (e.g., Arabic/Farsi). See Table 1. One
of these pairs—Arabic/Hindi—serves as a kind
of “control” group; although there is a substantial

1https://faker.readthedocs.io/en/master/

https://github.com/csu-signal/xlingual-robustness


amount of vocabulary shared due to borrowing,
the two languages use different native scripts,
and since we perform experiments over the raw
text without transliteration, we expected there
to be little token- or word-level overlap between
these languages in terms of the raw text. In this
paper, we will follow the pairwise notation L1/L2,
where L1 refers to the HRL in a pair and L2, the
LRL. In the selected pairs, the HRL is often a
major world or national language while the LRL is
often a regional or minority language, providing
an opportunity to examine where biases toward
major world languages creep into NLP for minority
or underrepresented languages.
WikiANN contains NER data for every language

in our set, in standard BIO notation for person
(PER), location (LOC), organization (ORG), and mis-
cellaneous (MISC) categories, and so serves as
the NER dataset for our experiments.
We chose NER as an experimental task as it

is one of the most common NLP tasks in both
research and industrial applications.2 Another of
the most common tasks is document classifica-
tion, but a document classification corpus in all
of the languages we evaluate is not available.3
We therefore approximate this task by creating a
Wikipedia Section Title Prediction dataset for our
languages of interest following the methodology of
Kakwani et al. (2020). Section title prediction is
an appropriate approximation for document clas-
sification because Wikipedia articles are usually
sectioned into distinct topics regarding the subject,
such as “Early life” and “Career” for biographical ar-
ticles, or “Government” and “Economy” for articles
about states or localities, which parallel categories
in document classification corpora like the Reuters
Corpus dataset.
We built the Section Title corpus by crawling the

Wikipedia pages corresponding to each specific
language. We extracted the pages with at least
4 sections. Following this, we used the WikiEx-
tractor tool (Attardi, 2015) to systematically extract
sections along with their associated second and
third-level titles from the Wikipedia pages. The
dataset contains subsection text paired with four
candidate titles, of which one is correct and the
others are titles of other sections of the same ar-
ticle. We collected as many samples as possible
for each language up to a limit of 100,000. Data
sizes are given in Table 1.
All datasets were then divided into an 80:20

train/test split.

2https://gradientflow.com/2021nlpsurvey/
3Schwenk and Li (2018) come closest, with 8 lan-

guages.

HRL Size LRL Size Relationship
Arabic (ar) 100K Farsi (fa) 100K Borrowing
Arabic (ar) 100K Hindi (hi) 42.6K Borrowing
Czech (cs) 100K Slovak (sk) 61.1K Areal, Genetic
Dutch (nl) 100K Afrikaans (af) 29.7K Genetic
English (en) 100K Scots (sco) 5.1K Areal, Genetic
English (en) 100K Welsh (cy) 15.2K Areal, Borrowing
French (fr) 100K Breton (br) 8.1K Areal, Borrowing
French (fr) 100K Occitan (oc) 13.7K Areal, Genetic
Indonesian (id) 100K Malay (ms) 60.3K Areal, Genetic
Italian (it) 100K Sicilian (scn) 1.4K Areal, Genetic
Spanish (es) 100K Aragonese (an) 5.1K Areal, Genetic
Spanish (es) 100K Asturian (ast) 85.5K Areal, Genetic
Spanish (es) 100K Catalan (ca) 100K Areal, Genetic

Table 1: Size of languages for section title predic-
tion dataset, and relationship between languages
in studied pair.

4. Methodology

To assess the effect of zero-shot transfer between
languages with overlapping vocabulary, we com-
pare the performance of the MBERT and XLM-R
models. These are two of the most well-known
multilingual, publicly-available encoder-style mod-
els in use, notable for their abilities to align seman-
tically similar representations across languages
and for their multilingual task performance (Pires
et al., 2019; Conneau et al., 2020). We evalu-
ate both models in a native setting when they are
fully fine-tuned on the two tasks in an LRL; in a
transfer setting, where they are trained on an HRL
and evaluated on the paired LRL; and under differ-
ent perturbations of the data. Details are given in
Sec. 5.
The two tasks chosen represent two fundamen-

tal NLP inference challenges: information extrac-
tion (IE) from unstructured texts, encompassing
the identification of individuals’ names, organiza-
tions, geographical locations, etc.; and the selec-
tion of the appropriate classification of a text from
multiple options, requiring the selection of themost
appropriate title for a section text among the four
presented choices. NER is a valuable IE task to
assess the effects of vocabulary overlap on cross-
lingual transfer, because named entities in LRLs
are often borrowed from HRLs with minimal modi-
fications. Title selection is a valuable classification
task for similar reasons: section texts represent
“documents” where key words evidencing the sec-
tion title options may be shared or similar between
languages. For instance in the Welsh example
“mae logo’r ddarpar fanc,” logo overlaps with En-
glish and predicts the section title “logo.”

4.1. Perturbation methods

Two additional small datasets were gathered for
the perturbation process: 1) A dataset of given
names for each target language scraped from
the [Language]_given_names category of Wik-
tionary. 2) A dataset of places for each target lan-



guage scraped from its Places category in Wik-
tionary.
We implemented four methods to generate ad-

versarial sets:

1. Change given names (first element) of all
PER entities to randomly-chosen elements
of the given names dataset in the same lan-
guage.

2. Change names of all LOC entities to
randomly-chosen elements of the place-
names dataset in the same language.

3. Replace named entities in the L2 test file that
also occur in the L1 training file with a named
entity with the same tag that occurs in L2 test
but not in L1.
For example, Tour Eiffel (Eiffel Tower) is the
same in Breton and French, so it may be re-
placed with Bolz-enor Pariz (Arc de Triom-
phe), which is the same NER type, but non-
overlapping.

4. Leave the the named entity unchanged, but
instead take surrounding words in the L2 test
file that occur in the L1 training file and replace
them with words unique to L2 test that are not
punctuation or stop words.4 The substitute
word is the word with the highest cosine simi-
larity with the original word.5

For example, in An Tour Eiffel zo un tour met-
alek savet e Pariz gant Gustave Eiffel (“The
Eiffel Tower is a metal tower built in Paris by
Gustave Eiffel”), the word tour is the same in
Breton and French, so it is replaced with a
semantically-similar Breton word that doesn’t
also occur in the French wordlist. Table 2
shows a sample of original words and their
substitutes determined by cosine similarity ac-
cording to MBERT and XLM-R. This sample
shows how bias can creep into the substitu-
tions, viz. “males” for “hijackers”.

5. Combine the perturbations 3 and 4 to change
the entities and surrounding words at the
same time.

For section title prediction, we use only pertur-
bation 4, which does not require the training data
to be tagged with NE labels.

4https://github.com/stopwords-iso/stopwords-iso/
provided the stop word lists.

5Computing the most similar word follows Nath
et al. (2022) and constructs a dummy “sentence”
consisting of [CLS]<word>[SEP] (MBERT) or
<bos><word><eos> (XLM-R) for each word, and com-
puting the cosine distance between the contextualized
first token representation.

Content word MBERT option XLM-R option
channels shots broadcasts
bred lived assistant
population parted people
serve carried arrangement
place event there
journalist lawyer activist
female woman woman
hijackers triumphs males
defeated won defeating

Table 2: Sample of highest cosine-similarity
alternatives existing in the test split of the En-
glish dataset. Since we focus on non-English lan-
guages, these are note actual examples from the
data but rather illustrative of the phenomenon and
extracted using the same methdology in use.

Adversarial set generation was conducted au-
tomatically. For semantic-level perturbations like
perturbation 4, a manually-created semantic re-
source like WordNet is appealing, but infeasible
due to some of the languages we examine, for
which there do not exist sufficient WordNet or
WordNet-like resources. For instance, we consid-
ered Global WordNet6 but even this resource does
not exist for all of our languages of interest, for in-
stance Aragonese. This is to be expected given
that the domain in question is low-resource lan-
guages. Secondly, WordNets that do exist for the
languages of interest are incomplete or very small,
lacking a substantial number of words. Thirdly,
WordNet synsets do not necessarily cover alterna-
tive potential substitutions that would be sensical,
without traversing the synset tree quite far from the
word of origin. For instance, instead of saying “I
see my sister that day,” a reasonable perturbation
would be “I see my mother that day,” but despite
being semantically similary, “sister” and “mother”
are not in a synset. Similarly, a WordNet-based
approach for synonym replacement becomes chal-
lenging when dealing with homographs, such as
(in English)might/could vs. might/strength. There-
fore, for consistency across all language, we used
the automated method as described.

4.2. Computing vocabulary overlap

To investigate the correlation between vocabulary
overlap and zero-shot knowledge transfer across
languages, we started by extracting all labeled
NER chunks within the datasets of the paired lan-
guages, and computing the percentage of identi-
cal words with identical labels—excluding those
tagged O. For a pair, the percentage of overlap be-
tween L1 and L2 is considered to be number of
words shared between the L1 training set and L2

6https://omwn.org/

https://github.com/stopwords-iso/stopwords-iso/
https://omwn.org/


L1 L2 % overlap
ar hi 4.88
ar fa 19.94
cs sk 39.55
nl af 31.57
en sco 25.19
en cy 22.07
fr br 23.33
fr oc 23.61
it scn 43.17
id ms 41.87
es an 46.26
es ast 47.66
es ca 36.77

Table 3: Named entity overlap in L1-train/L2-test
for NER.

L1 L2 Model % overlap
ar hi MBERT 2.12
ar hi XLM-R 1.98
ar fa MBERT 14.65
ar fa XLM-R 15.01
cs sk MBERT 24.26
cs sk XLM-R 24.18
nl af MBERT 22.63
nl af XLM-R 22.57
en sco MBERT 29.22
en sco XLM-R 29.19
en cy MBERT 17.31
en cy XLM-R 17.08
fr br MBERT 9.50
fr br XLM-R 9.44
fr oc MBERT 23.09
fr oc XLM-R 23.04
id ms MBERT 36.34
id ms XLM-R 36.34
it scn MBERT 25.99
it scn XLM-R 25.86
es an MBERT 24.80
es an XLM-R 24.77
es ast MBERT 29.59
es ast XLM-R 29.65
es ca MBERT 17.12
es ca XLM-R 17.20

Table 4: Word overlap in L1-train/L2-test for title
prediction task.

test set divided by the total number of words in the
L2 test set. See Table 3.
For section title prediction, we identified com-

mon and unique words for perturbation, and per-
formed overlap computation, using the first 128 to-
kens from each section. Due to variances in tok-
enization between MBERT and XLM-R, there may
be different values for overlap between the two
models (see Table 4).

5. Evaluation

Weused the bert-base-multilingual-cased
(Devlin et al., 2019) (MBERT) and
xlm-roberta-base (Conneau et al., 2020)
(XLM-R) variants. We fine-tuned each of these
models in the two tasks in multiple conditions:
1) Native L2: A standard fine-tuning on the

L2 training data and testing on the L2 test data;
2) Cross-lingual transfer: Fine-tuning on the L1
training data and testing on the L2 test data. Since
the language pairs were selected for vocabulary
overlap, this condition allowed us to assess the
level to which performance on a LRL can be
achieved by exposure to data only from an HRL
that may contain similar task-relevant vocabulary.
3) Perturbation: In each of the two above condi-
tions, the task-relevant perturbations are applied,
to further assess the extent to which cross-lingual
transfer or native performance is robust to adver-
sarial changes to the input.
To account for randomness in training and test-

ing sample selection, which could lead to disparate
values, we averaged the results across three runs.
Our primary evaluation metric is F1 score relative
to token overlap in the chosen sentences rather
than the entire token pool. This methodology
aligns with our earlier strategy, where we concen-
trated on examining the overlap between the L1
training set and the L2 testing set, rather than
the entire datasets of L1 and L2, offering a more
precise insight into the multilingual capacities of
the models relative to specific training and testing
data.

6. Results

Table 5 shows the performance on NER and ti-
tle selection of MBERT and XLM-R, for all evalu-
ated language pairs, with baseline (unperturbed)
scores, and scores after all applicable perturba-
tions. Table 6 shows the statistical significance
of the performance changes associated with each
perturbation, given the model and cross-lingual
transfer setting.
We can see that using an HRL→LRL trans-

fer setting never reaches the performance of the
native LRL fine-tuning, falling below by ∼1-30%
F1/accuracy. Where cross-lingual transfer comes
closest is in language pairs that are geograph-
ically close and genetically close (e.g., Span-
ish/Asturian), because core vocabulary is likely
to be similar already, and the document sets in
the training data likely share named entities like
names of people and locations that are commonly
discussed in the two languages. Interestingly,
though, we see that the cross-lingual transfer mod-
els appear to be more robust to certain pertur-



MBERT XLM-R
NER WikiTitle NER WikiTitle

Train Test Base P1 P2 P3 P4 P5 Base P4 Base P1 P2 P3 P4 P5 Base P4
ar hi 67.2 64.2 68.9 67.2 67.2 67.2 63.6 63.0 67.3 67.4 70.7 67.3 67.3 67.3 75.8 75.0
hi hi 86.7 86.5 87.2 71.3 79.0 66.7 73.8 72.5 87.5 87.2 88.1 76.6 80.7 68.3 77.8 77.1
ar fa 45.0 43.0 44.7 45.0 45.0 44.9 79.3 77.1 43.6 42.8 40.1 43.6 43.5 43.4 78.0 73.9
fa fa 90.3 88.0 89.1 86.5 60.8 56.7 81.6 79.1 89.4 88.2 87.4 85.5 78.2 74.1 81.0 76.5
cs sk 82.9 82.4 87.0 78.4 82.5 77.9 80.3 75.6 78.0 77.2 86.1 73.4 78.1 73.5 80.3 73.3
sk sk 92.6 91.7 91.0 86.4 92.1 85.0 83.5 78.5 91.5 91.1 89.8 81.5 88.6 77.5 82.3 75.1
nl af 81.2 81.0 83.8 78.4 81.2 78.6 78.5 71.6 79.9 80.0 81.5 77.8 79.3 76.9 75.4 71.6
af af 92.2 91.6 92.1 81.1 89.5 78.5 81.3 74.3 89.8 90.0 90.8 77.9 86.2 76.0 76.8 66.9
en sco 78.3 77.9 72.0 71.0 78.2 71.7 85.7 76.2 62.4 62.0 60.6 60.6 63.2 61.3 75.5 62.5
sco sco 93.4 93.0 83.2 81.0 91.4 79.2 88.6 80.8 90.2 89.6 82.5 79.6 87.5 75.0 71.5 60.2
en cy 62.5 61.8 65.3 61.3 62.4 61.6 67.5 63.6 61.5 61.2 64.9 60.4 61.4 60.4 61.7 58.8
cy cy 92.6 91.9 87.1 77.0 89.5 75.0 76.6 73.5 90.9 90.4 85.1 76.1 83.1 67.8 72.1 67.3
fr br 74.3 71.8 73.5 73.3 74.2 72.8 66.6 63.1 66.3 64.2 66.6 64.7 66.3 64.5 59.3 54.0
br br 92.8 88.4 88.2 84.5 88.8 79.9 71.1 66.1 89.1 85.8 87.1 81.3 82.8 74.1 59.3 55.2
fr oc 83.9 83.7 89.1 83.5 83.7 83.4 76.6 71.9 72.5 72.3 78.8 71.8 72.3 71.9 66.5 59.1
oc oc 95.3 94.9 95.8 92.3 87.8 83.9 79.1 75.2 93.8 93.0 94.6 91.5 92.6 89.8 67.0 61.3
id ms 68.7 67.7 76.7 64.8 68.5 64.8 79.9 68.4 69.7 69.5 79.9 66.2 69.5 65.8 78.3 58.4
ms ms 92.4 92.6 83.5 81.7 81.8 70.5 82.7 71.8 92.4 91.9 89.1 71.7 79.7 59.5 80.3 62.4
it scn 63.7 63.3 80.2 58.4 49.5 45.4 71.0 66.2 60.8 60.7 74.0 55.3 50.4 45.5 60.7 46.8
scn scn 92.9 91.1 88.1 79.8 74.4 64.9 64.3 57.1 90.5 88.2 82.8 79.7 72.4 62.5 40.0 39.0
es an 88.0 87.9 84.8 85.4 80.7 77.5 86.1 76.3 86.1 86.2 86.4 83.3 75.3 72.9 77.0 55.0
an an 95.8 95.8 88.4 85.6 90.9 79.1 83.4 76.8 94.2 93.6 92.5 79.8 80.4 66.1 72.6 59.4
es ast 90.4 90.2 86.0 85.1 89.6 84.6 84.1 77.5 84.3 84.2 86.0 77.0 84.1 76.3 76.7 59.6
ast ast 93.6 92.8 90.1 82.7 93.3 79.7 85.2 78.4 89.6 89.2 90.1 77.7 90.0 76.4 80.3 68.0
es ca 85.1 84.3 87.2 84.0 85.1 84.0 79.3 75.9 82.6 82.8 83.9 80.8 82.3 79.8 72.8 66.2
ca ca 92.3 91.5 91.6 87.3 91.6 86.5 85.9 83.0 89.4 89.6 88.0 83.3 88.6 82.1 83.9 78.0

Table 5: F1×100 (NER) and accuracy (title prediction) scores for MBERT and XLM-R without perturba-
tion (Base) and with all applicable perturbations on all evaluated language pairs. P1-5 references the
different perturbations described in the list in Sec. 4.1. Bold numbers refer to native and cross-lingual
NER accuracy values when the source language is Spanish, which are discussed further as noteworthy
cases in Sec. 7.

bations, such as P4 (perturbing context words),
which by itself did not significantly change the NER
results for MBERT or XLM-R using cross-lingual
transfer. MBERT cross-lingual models are also
more robust to P2 than XLM-R cross-lingual mod-
els, as the perturbation of LOC tags also did not af-
fect results to a statistically significant extent. XLM-
R was more robust to random replacement of B-
PER tags. On average, MBERT appears more ro-
bust to the perturbations we applied, where even
the performance changes that were statistically
significant were less so than those of XLM-R. How-
ever, we should note that even the simple pertur-
bation of changing context words in the title selec-
tion task degraded performance to a very signifi-
cant level nearly across the board.

7. Discussion

7.1. NER

Under perturbation of B-PER tokens (P1), macro
F1 score changes between 0–4% and F1 of PER
classes changes from 1–13%, depending on the
B-PER distribution and the number of available al-
ternatives. Under perturbation of LOC tokens (P2),
macro F1 score changes from 1–13% and LOC
F1 (averaged across B-LOC and I-LOC) changes
from 1–27%. Although LOC tokens form a greater
proportion of the test data than B-PER tokens

alone, perturbing the LOC tokens causes far less
drop in performance. One reason may be that
many LOC entities in the test sets include 3–6
individual tokens, while the alternate candidates
scraped from Wiktionary mostly include 2 tokens,
making it easier to segment shorter NE chunks.
Notably, LOC perturbation frequently causes per-
formance on a language pair to rise, perhaps
significantly (see Italian/Sicilian), signaling cases
where cross-lingual transfer provides increased ro-
bustness to adversarial data, relative to baseline
performance. Distributions of B-PER and LOC to-
kens in the LRL test sets are shown in Fig. 1.

Figure 1: WikiANN distribution of B-PER and LOC
for different LRLs.



MBERT XLM-R
NER: L2 avg. ∆ F1 NER: L1→L2 avg. ∆ F1 NER: L2 avg. ∆ F1 NER: L1→L2 avg. ∆ F1

P1 p = 0.0118 -1.00 p = 0.0046 -0.92 p = 0.0116 -0.80 p = 0.0655 -0.34
P2 p = 0.0033 -3.65 p = 0.2096 2.15 p = 0.0165 -2.33 p = 0.0246 3.42
P3 p < 0.0001 -9.66 p = 0.0013 -2.72 p < 0.0001 -10.46 p = 0.0013 -2.52
P4 p = 0.0105 -7.07 p = 0.1500 -1.80 p = 0.0004 -6.73 p = 0.1499 -1.69
P5 p < 0.0001 -16.71 p = 0.0106 -4.36 p < 0.0001 -17.62 p = 0.0090 -4.26

Titles: L2 avg. ∆ acc. Titles: L1→L2 avg. ∆ acc. Titles: L2 avg. ∆ acc. Titles: L1→L2 avg. ∆ acc.
P4 p < 0.0001 -5.38 p < 0.0001 -5.54 p = 0.0002 -7.57 p = 0.0003 -9.52

Table 6: Effects of different perturbations, per model type by a paired, two-tailed t-test, and average
change in F1/accuracy. The average change in F1/accuracy metrics after perturbation appears signif-
icantly less during cross-lingual transfer than in the native setting. While XLM-R demonstrates nearly
equivalent robustness to perturbation in both settings in NER when compared to MBERT, its robustness
diminishes in the sentence-level task—section title prediction—where word memorization might be more
applicable.

Fig. 2 (first row) shows macro F1 change under
perturbations 3, 4, and 5 as a function of the de-
gree of vocabulary overlap between L1 and L2 for
all pairs. We observe a clear correlation between
the proportion of shared vocabulary items between
the train and test sets and the performance degra-
dation when test entities are perturbed to substi-
tute those that are shared between the sets with
unique entities. In the cross-lingual transfer mod-
els, this removes words that are common between
L1 and L2 and replaces them with words unique to
L2. This suggests that multilingual models’ NER
performance for LRLs depends to some extent on
word memorization, and the extent to which this is
true is a function of vocabulary overlap with other,
more well-resourced languages; the model may
not be recognizing that a term is a named entity in
Occitan or Catalan, but rather one from a French
or Spanish corpus and is “riding” its ability to per-
form in those languages.

Degradation of performance under P4 (chang-
ing surrounding context words—see Fig. 2, top
center) is pronounced in the native L2 models,
but for most cross-lingual transfer models, degra-
dation is small. Two notable exceptions are Ital-
ian/Sicilian and Spanish/Aragonese, where per-
turbing context words causes a drop of ∼8–20 F1

points.

Under perturbation 5 (the combination of pertur-
bations 3 and 4), NER performance suffers a fairly
precipitous drop. The three pairs involving Span-
ish (Spanish/Aragonese, Spanish/Asturian, and
Spanish/Catalan; bolded in Table 5) are notable
here, in that P5 brings the native model down to
the performance level of the unperturbed cross-
lingual transfer model (in the case of Aragonese
and Asturian, perturbed native model performance
drops below the performance of the model trained
for cross-lingual transfer from Spanish). This also
suggests that on these LRLs, MLLMs may be
leveraging their capabilities in Spanish to achieve
their initial performances.

7.2. Section Title Prediction

In this task as with NER, in the case of cross-
lingual transfer, the degree of overlap has a sig-
nificant impact on the F1 score, with a noticeable
drop in F1 score when key words in the target lan-
guage are removed.
In the lower center of Fig. 2, the plot shows the

effect of perturbation 4 (perturbing context words)
on the title selection, when the substitutes are cho-
sen randomly instead by choosing the most simi-
lar candidate according to the cosine function. We
can see that MBERT suffers more from the ran-
dom perturbation than from the cosine perturba-
tion in the cross-lingual transfer condition, but both
models suffer more from this perturbation when
compared to the other one in the native condition.
One point of note is that in the case of Ara-

bic/Hindi, the one pair where the two languages
use different native scripts, none of the perturba-
tions appeared to have much effect in the cross-
lingual setting. This is expected, due to the low
default token overlap: a model fine-tuned on Ara-
bic will have difficulty handling Hindi words written
in Devanagari, regardless of what they are. What
is interesting is that in the case of Arabic/Persian,
which do share the same script, the same is true,
and Arabic/Persian cross-lingual transfer perfor-
mance on NER is substantially lower than on Ara-
bic/Hindi, despite the differences in script and
therefore tokenization.
A native Persian speaker conducted a qualita-

tive analysis of words judged similar for use in P4
and P5, according to their cosine similarity. In
both MBERT and XLM, similar words were often
found to rhyme or share subwords: e.g., mârk
(“brand”) vs. mârd (“evil”), or sard (“story”) vs. sar-
dard (“headache”). This implies that subword to-
kens are being overvalued when computing vec-
tors from [CLS]/<bos> tokens in Persian, and
perhaps other LRLs.
In the native condition, overlap is computed us-

ing non-stop words found in both the training and



Figure 2: Change in F1 score under perturbation as a function of degree of vocabulary overlap. Left to
right, top to bottom: P3 for NER, P4 for NER, P5 for NER, P4 for title selection, P4 for title selection using
random substitutions instead of the most cosine-similar words.

test files. Consequently, when the value is low, as
is the case with Breton, we would expect perfor-
mance under perturbation to remain relatively un-
changed (compare Hindi), but Breton still suffers
a performance loss of ∼4–5 F1 points. This sug-
gests that this task relies heavily on word memo-
rization of the training data, as a similar drop in per-
formance is observed when words are substituted
randomly. The semantic similarities of the substi-
tute words under P4 seem to not matter. Sicilian
performance in MBERT substantially exceeds that
of XLM-R, but also suffers more under perturba-
tion. Sicilian training data is included in the pre-
training data for MBERT but not for XLM-R, which
partially explains this trend, but the much lower
performance of the native Sicilian XLM-R model
on title selection compared to NER suggests that
NER fine-tuning can leverage other representa-
tions (e.g., common named entities between Ital-
ian and Sicilian) in a way that a task that requires
inference over more common words, like title se-
lection, cannot.

8. Conclusion and Future Work

In this paper, we have presented a set of adver-
sarial perturbations to test the ability of language
models to generalize from higher-resourced lan-
guages to lower-resourced languages in a cross-
lingual transfer zero-shot setting. Our experiments
are performed in a language-agnostic manner for
both NER and title selection tasks. To our knowl-

edge, this is the first time such an experimental
set has been performed with an explicit focus on
LRLs and cross-lingual transfer from HRLs. We
conducted evaluations on 21 languages, encom-
passing both high and low-resource languages,
employing two widely recognizedmultilingual mod-
els, MBERT and XLM-R. Results exhibit variations
across different languages, influenced by their lin-
guistic structures and similarities. Our core find-
ings can be summarized as follows:

• There is a pronounced effect of vocabulary
overlap on NER performance. Perturbing
named entities so that the test data con-
tains only non-overlapping words has a sta-
tistically very significant impact on model per-
formance.

• Although models utilizing cross-lingual trans-
fer typically exhibit lower numerical perfor-
mance than models trained in a native LRL
setting, they are often somewhat more robust
to certain types of perturbations of the input.

• Title selection, as a proxy for document clas-
sification, in LRLs appears to heavily rely on
word memorization.

These proposed test sets have the potential for
further exploration, particularly in challenging tok-
enizers directly. For example, the Persian exam-
ples discussed in Sec. 7.2 suggest that, although
BPE tokenization methods should help LRL per-
formance by not biasing token vocabulary toward



frequent tokens in a specific language (Sennrich
et al., 2016), similarity between subword tokens
may be overvalued when optimizing the embed-
ding space. This, among other factors, motivates
the need for an equitable consideration of lower-
resource languages in building NLP models (Joshi
et al., 2020).
Our results show that MLLMs exhibit some level

of “mutual intelligibility” between individual lan-
guages; a model can “get by” in a language like
Asturian if it knows a similar language like Span-
ish. However, a risk of MLLMs is a systematic
encoding of biases toward HRLs, which also has
implications for representations of minority and re-
gional languages. Our own datasets, due to avail-
ability of online resources, are still biased toward
Indo-European languages. A multilingual capacity
is not necessarily enough to handle an arbitrary
input language (Virtanen et al., 2019; Scheible
et al., 2020; Tanvir et al., 2021; Nath et al., 2023),
and performance is sensitive to minor changes to
the input, even without perturbations in the latent
space (Narasimhan et al., 2022).
Finally, this research has been conducted on en-

coder models. The reasons for this are manifold
but center around the fact that encoder models, be-
ing older and smaller, typically demand fewer com-
putational resources, allowing us to perform more
experiments. Additionally, unlike currently-touted
SOTA decoder models like GPT-4, most encoder
model weights and processing pipelines are freely
available on platforms like HuggingFace (Wolf
et al., 2019), meaning that we can directly access
the embedding spaces to inform our perturbation
techniques. Nonetheless, our findings could influ-
ence directions for probing and prompt engineer-
ing for generative models that exhibit multilingual
capability. Most open-weight generative models
(e.g., LLaMA 2 (Touvron et al., 2023)) are not mul-
tilingual; those that are, such as ChatGPT/GPT-4
(Qin et al., 2023), remain closed. However, since
our techniques are general, they could be applied
to open-source multilingual generative models like
XGLM (Lin et al., 2021). We do note that multilin-
gual generative models still do not necessarily all
the languages we study here, which further indi-
cates a resource deficiency for many languages
when it comes to SOTA generative NLP.
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