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Abstract

In this paper, we examine a set of object interactions gen-
erated with a 3D natural language simulation and visual-
ization platform, VoxSim (Krishnaswamy and Pustejovsky
2016b). These simulations all realize the natural language
relations “touching” and “near” over a test set of various ob-
jects within a 3-dimensional world that interprets descrip-
tions of motion events and renders their visual instantiations
from the perspective of an embodied virtual agent. These ob-
ject interactions were evaluated by human judges using Ama-
zon Mechanical Turk and we examine some of the qualita-
tive interpretations provided by humans over these computer-
generated interpretations of underspecified relations, condi-
tioned on the frame of reference (agent’s point of view) and
object position relative to that point of view (POV). Through
analysis of the human evaluations, we find that average eval-
uator satisfaction with many specifications for these relations
appears to strongly depend on the relationship between the
two objects and between the objects and the POV.

Introduction
While the idea of simulation in cognitive linguistics has
become more popular over the past decade (Bergen 2012;
Lakoff 2009), it has not been adopted into broad usage, due
in part to arguments against the efficacy of simulation in ex-
plaining natural language understanding (Davis and Marcus
2016), particularly regarding linguistic phenomena involv-
ing continuous ranges or underspecified values. Here, we
argue that simulation, when modeled within a dynamic qual-
itative spatial and temporal semantics, can provide a robust
environment for examining the interpretation of linguistic
behaviors, including those described qualitatively.

Qualitative representation is well-suited to handling ques-
tions of linguistic underspecification, and such questions oc-
cur frequently in the process of natural language understand-
ing, as for any linguistic predicate, the amount and nature of
information it provides varies. “Put the ball near the plate”
is a perfectly valid sentence, one that can be “mentally simu-
lated,” and while values such as distance between the objects
and relative orientation can be further specified, the minimal
model of the event does not require it. However, for any such
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event enacted in the real world, these unstated or underspec-
ified parameters have values, even if they are not measured.
Thus there may be a set of values [a] for a parameter under-
specified in a sentence s for which the resulting event rep-
resents a proposition p such thatM � ps[a] and another set
of values [b] which results in a proposition p such thatM 2
ps[b]. Attempting to separate the two sets computationally
entails two tasks:

• Building a computationally coherent model of a world
that can be evaluated from an embodied human perspec-
tive;

• Determining which values result in an enactment of an
event that satisfies a human judge’s notion of that event.

Such an approach allows us to directly map a linguistic
modality of expression through a dynamic semantics (Mani
and Pustejovsky 2012) to a visual modality.

A verbal or relational predicate may impose constraints
on the event or relation it describes. These constraints
may be on the path or manner of motion (Pustejovsky and
Moszkowicz 2011), or alternately on the resultant state of
the event. For instance, the relations “touching” and “near,”
applied to objects, impose different constraints on the dis-
tance between them, while leaving relative orientation com-
pletely open, in principle.

A wealth of prior work exists on the role of orienta-
tion in Qualitative Spatial Reasoning (QSR) (Freksa 1992;
Moratz, Renz, and Wolter 2000; Dylla and Moratz 2004;
Renz and Nebel 2007), on QR as an information-bearer
in situations with underspecified or incomplete knowledge
(Kuipers 1994; Joskowicz and Sacks 1991), or on us-
ing cardinal directions or path knowledge in QSR (Frank
1996; Zimmermann and Freksa 1996). More recent work
leverages QSR to improve machine learning (Falomir and
Kluth 2017), object manipulation or environment navigation
(Thrun et al. 2000; Rusu et al. 2008), all areas which this
work can inform.

Kuipers (2000) contains formalisms for melding local ge-
ometric frames of reference into global frames, however
most research into the intersection of frames of reference
and QSR, e.g., Frank (1992), are appropriately proposed as
algebraic formalisms, fitting with existing usage of qualita-
tive representations to handle linguistic underspecification.
In this application paper, we reverse the approaches used



in some of this work, inferring the effects of POV on hu-
man judgments from observed data, and believe this paper
is well-situated to introduce a method of using multimodal
simulation to address some of these evaluation issues. Our
methodology implements and tests QR theories in real time
and our results show that variations in relative point of view
often introduce uncertainties in evaluators’ satisfaction with
the visualizations of these relational predicates, suggesting
that the most satisfactory or prototypical instantiations of
these QSR relations are ones that are minimally-dependent
on point of view.

Perspective and Embodiment in a Multimodal
Simulation

Central to understanding the role of perspective (point of
view) in a multimodal simulation is the notion of embod-
iment (Gibbs Jr. 2005; Ziemke 2003; Kiela et al. 2016).
Embodiment has many interpretations, but here we view
it as a model generation constraint. Meaning centrally in-
volves the activation of perceptual, motor, social, and affec-
tive knowledge that characterizes the content of utterances.
Understanding a piece of language is hypothesized to entail
performing mental perceptual and motor simulations of its
content. Thus the requirements on a “multimodal simula-
tion semantics” include, but are not limited to, the following
components (Pustejovsky and Krishnaswamy 2016a):

• A minimal embedding space (MES) for the simulation
must be determined. This is the 3D region within which
the state is configured or the event unfolds (Pustejovsky
and Krishnaswamy 2014);

• Object-based attributes for participants in a situation or
event need to be specified; e.g., orientation, relative size,
default position or pose, etc. (Pustejovsky 2013);

• An epistemic condition on the object and event render-
ing, imposing an implicit point of view (POV) (Levinson
2003);

• Agent-dependent embodiment; this determines the rela-
tive scaling of an agent and its event participants and their
surroundings, as it engages in the environment (Krish-
naswamy and Pustejovsky 2016a).

We expect these assumptions to apply in a broad sense
across simulation-based approaches with the current tech-
nology.

In a visualization, the agent embodiment and associated
point of view is represented at least minimally by the in-
world camera, the point relative to which all graphical ren-
dering is evaluated. When visualizations are presented to
human judges, the established camera perspective then be-
comes their point of view, making the point of view a crucial
variable in the effective representation of relative spatial re-
lations.

The camera in a simulated visual world may be allowed to
freely roam, be restricted to a fixed position, or be attached
to a virtual agent. These variations in perspective allow a
human interacting with or watching the simulation to share
the same visual context as the computer, and to view it and

the objects contained therein from a variable relative frame.
If constrained to an agent, this provides a way of looking
inside the agent’s “brain” and perceiving what it perceives.

In order to control for the variable frame of reference
while exercising a variety of qualitative spatial relations over
the course of the event simulations, the camera was con-
strained to a fixed absolute perspective, while the objects be-
ing simulated were initialized in a grid pattern. This means
that for any given object pair, the simulated motion event
maintained the same relative relations between the respec-
tive objects and the camera, while transforming the relations
between the objects relative to each other. Thus during eval-
uation, we could condition on object-to-object orientation
and distance relative to the frame of reference.

VoxML and VoxSim Overview
Previously, we developed a concept modeling and visual-
ization language, VoxML, to describe and encode qualita-
tive and geometrical knowledge about objects and events
that is presupposed in linguistic utterances but not made ex-
plicit in a visual modality (Pustejovsky and Krishnaswamy
2016b). This includes information about symmetry or con-
cavity in an object’s physical structure, the relations en-
tailed by the occurrence of an event in a narrative, the qual-
itative relations described by a positional adjunct, or be-
haviors afforded by an object’s habitat (Pustejovsky 2013;
McDonald and Pustejovsky 2014).

Relational information in VoxML can be encoded using a
variety of QSR calculi such as the situation calculus (Bhatt
and Loke 2008), the Intersection Calculus (Kurata and Egen-
hofer 2007; Mark and Egenhofer 1995), or the Region Con-
nection Calculus (RCC) (Randell et al. 1992) and 3D vari-
ants (Albath et al. 2010). Leveraging these spatial frame-
works allow relations to be tested for at runtime using sim-
ple positional metrics, and then composed with object prop-
erties.



on
LEX =

[
PRED = on

]

TYPE =



CLASS = config
VALUE = EC

ARGS =

 A1 = x:3D
A2 = y:3D


CONSTR = y→HABITAT→INTR[align]






in
LEX =

[
PRED = in

]

TYPE =



CLASS = config
VALUE = PO ‖ TPP ‖ NTPP

ARGS =

 A1 = x:3D
A2 = y:3D


CONSTR = y→HABITAT→INTR[align]?




Figure 1: VoxML structures for “on” and “in” using qualita-
tive RCC relations.

For example, from Fig. 1, knowing that “on” describes
a relation of external connection, we can then semantically
compose this with an object argument and test the condi-
tions under which such a relation would be realized. For



example, if the object scoped by “on” is concave, another
object placed in the concavity would be “on” that object,
such as putting an apple on a plate, provided the plate is in
an environment or habitat that affords that action.

Figure 2: Visualization of an apple being placed on a plate
Using a different object, such as a cup, would require the

agent or simulation system to put the apple in the cup in
order to achieve an analoguous configuration, due to differ-
ences in the object’s structure, and hence its affordances. In
this configuration, the object would at least partially inter-
penetrate the total bounds of the cup.

The examples of motion events referred to herein were
generated using the software package VoxSim. VoxSim
(Krishnaswamy and Pustejovsky 2016a; Krishnaswamy and
Pustejovsky 2016b) is a semantically-informed 3D visual
event simulator built on top of the VoxML framework us-
ing the Unity game engine (Goldstone 2009). Using Unity’s
capability in subsystems like graphics processing, UI, and
physics, we built systems to handle language processing,
theoretical reasoning, and AI in a real-time game or “game-
like” environment, in the vein of work presented by Forbus
et al. (2002) and Dill (2011).

VoxSim dynamically generates animated visualizations
of motion events using real-world knowledge about said
events and their object participants, marked up in VoxML.
VoxSim exploits VoxML-encoded information about an ob-
ject’s habitat, or situational context that enables or dis-
ables certain affordances or actions that may be under-
taken using the object. These affordances may be either
Gibsonian or telic in nature (Gibson 1977; Gibson 1979;
Pustejovsky 1995). Gibsonian affordances are those that
emerge from an object’s physical structure, such as “grasp”
or “contain,” while telic affordances are goal-directed affor-
dances that emerge from the Gibsonian affordances (e.g., a
cup can contain liquid, so it might have a telic affordance of
“drink from”). Both types of affordances are important for
determining what spatial relations a pair of objects must sat-
isfy as the result of undergoing a transformation interpreted
from a natural language command.

More information about VoxML, VoxSim, and imple-
mentational details of these considerations may be found at
http://www.voxicon.net. The latest VoxSim source code is
available at https://github.com/VoxML/VoxSim.

Data Acquisition
Objects
block book banana
ball blackboard bowl
plate bottle knife
cup grape pencil
disc apple paper sheet

Table 1: Object test set

Using VoxSim, we generated 1210 individual videos of ob-
jects listed in Table 1 interacting in the qualitative, under-
specified relations “touching” and “near.” In each video, ob-
jects were moved through the scene without being affected
by an agent, as shown in Fig. 4. Inputs to the simulator were
all given in the form “put the x {touching, near} the y,” such
as “put the ball touching the block” or “put the apple near
the bottle.” As “touching” and “near” are both underspeci-
fied spatial relations, further value specification is required
within the simulator to generate a distinct rendering of the
event, such that the simulator must choose a specific rela-
tion for touching(y) before generating a “put x touching y”
visualization, or must choose a location judged to be near(y)
before generating a “put x near y” visualization.

Predicate Underspecified Possible
parameters values

touching(x) rel orientation {left(x), right(x),
behind(x),
in front(x), on(x)}

near(x) transloc dir V ∈ {〈y-x(x),
y-y(x), y-z(x)〉 | d(x,y)
< d(edge(s(y),y)),
IN(s(y)), ¬IN(y)}

Table 2: Predicate value assignments
For “touching,” we provided the system with a five-way

choice between other relations that specified direction and
orientation. The substitute predicates for “touching” were
all assumed to be axis-aligned between the objects involved,
and to include an EC connection per the RCC (that is, left(x)
is operationalized as “left and touching”). The perspective-
dependent relations left, right, in front and behind were all
computed relative to the camera’s point of view, allowing us
to condition evaluation of the results against this parameter.

For “near,” d is a linear distance function and s(x) is the
object surface that supports the object x. Thus V represents a
3-vector denoting a point on the test surface that is closer to
the target object (the argument of “near”) than to the closest
edge of the surface.

Figure 3: Test environment with all objects shown
Video was captured for each generated visualization, in

which these parameters were randomly assigned using a
Monte Carlo method, and logged to a database. The videos
were submitted to Amazon Mechanical Turk for evaluation.
In each human intelligence task (HIT), workers were asked
to select which of three videos best depicts the input sen-
tence that was used to generate all three. However, to al-
low for the possibility that the parameter being varied across

http://www.voxicon.net
https://github.com/VoxML/VoxSim


the three visualizations might actually be immaterial to the
question of whether or not the visualization adequately de-
picts the utterance, we allowed evaluators to choose multi-
ple answers if more than one video depicted the utterance
equally well. We also allowed evaluators to choose “none”
in situations where they thought none of the provided vi-
sualizations acceptably depicted the description. Evaluators
often took advantage of these options. The raw results are
therefore assumed to reflect the overall incidence of evalu-
ators accepting a given visualization for the provided utter-
ance. We therefore discuss the statistically evaluated results
in terms of “acceptability judgments.”

Each HIT was completed by 8 individual workers, to-
talling 3236 individual tasks evaluating visualizations of the
predicates “touching” and “near.”1

Figure 4: Sample object motion as might be seen during a
visualization of “put the banana touching the book” or “put
the banana near the book”. During capture of an event, all
objects not mentioned in the input sentence were removed.

Evaluation Metrics
Scene visualization work is not well-reflected in current
evaluation, due to sparsity of datasets and lack of a general-
domain gold standard (Johansson et al. 2005). Thus we
have to determine a priori what metrics are most informative
when assessing human judgments of events.

Human judgments of a visualization are given as “accept-
able” or “unacceptable” relative to the event’s linguistic de-
scription. While the precise values of the object coordinates
and relative offsets are necessary for the computer to cal-
culate and render the visuals, these are of less interest with
regard to the viewer’s acceptability judgment than the qual-
itative assessment of relations between the objects.

For “touching,” we provided the system with five qualita-
tive relations to choose from to specify the event, so we can
assess the probability that for an arbitrary visualization, an
arbitrary judge would judge it acceptable for its input sen-
tence, conditioned on a) the relation between the objects at
the end of the event, and b) the motion of the moving object
through the event (e.g., the object moves from behind the
stationary object to the right of it). These can be assessed
relative to the established POV, as discussed above in the
section on perspective and embodiment. When computing
the relations that apply between the two objects at the start
of the event, certain object pairs have two extant relations

1A small number of responses were rejected due to evaluators
failing to answer the required question.

(e.g., “left” and “behind”) since, as seen in Fig. 3, the ob-
jects are arranged in a grid pattern and not every object is
necessarily axis-aligned with every other object at the event
start. At the event’s end, only one relation should apply.

For “near,” we can condition on the same parameters but
this misses the crucial question of distance, which is selected
for in the linguistic predicate. As given in the value assign-
ment table (Table 2), the resulting distance between the two
objects in a “put near” event can fall in a continuous range
subject to constraints (closer to the stationary object than
to the edge of the table, not touching the stationary object).
Unity generates the target placement of the moving object
using a uniform distribution, in line with standard Monte
Carlo methods (Sawilowsky 2003), although instances may
be resampled if the location generated violates one of the
aforementioned constraints. This allows us to plot all the
distances that occur in the dataset for “put near” events as
a probability density over the magnitude function of contin-
uous random variable V (Table 2), partitioned into subsets.
For this evaluation, we use quintiles (q = 5), although data
using different quantiles can be easily generated by passing
a different parameter to the evaluation script. We condition
on ending orientation and ending distance between the mov-
ing object and stationary object, where the interval (0,QU1)
represents the smallest 20% of distances in the dataset.

Results
“Touching”

QSR (start) P(acc|QSR) QSR (end) P(acc|QSR)
behind(y) 0.5497 behind(y) 0.5474
in front(y) 0.5692 in front(y) 0.5816
left(y) 0.5753 left(y) 0.4995
right(y) 0.5725 right(y) 0.5560
on(y) N/A on(y) 0.6683

µstart ≈ 0.5667 µend ≈ 0.5725
σstart ≈ 0.0116 σend ≈ 0.0628

Table 3: Acceptability judgments and statistical metrics for
“put x touching y” visualizations, conditioned on relations
between x and y at event start and completion

Movement (M) P(acc|M)
behind→behind(y) 0.5347
behind→in front(y) 0.4758
behind→left(y) 0.5014
behind→right(y) 0.4888
behind→on(y) 0.7453
in front→behind(y) 0.4523
in front→in front(y) 0.6447
in front→left(y) 0.4601
in front→right(y) 0.5756
in front→on(y) 0.6234
left→behind(y) 0.5732
left→in front(y) 0.5853
left→left(y) 0.5266
left→right(y) 0.5211
left→on(y) 0.6492
(cont’d) (cont’d)



(cont’d) (cont’d)
Movement (M) P(acc|M)
right→behind(y) 0.5406
right→in front(y) 0.5786
right→left(y) 0.4777
right→right(y) 0.5847
right→on(y) 0.7081

µM ≈ 0.5624 σM ≈ 0.0811
µ→beh ≈ 0.5252 σ→beh ≈ 0.0515
µ→fr ≈ 0.5711 σ→fr ≈ 0.0701
µ→l ≈ 0.4911 σ→l ≈ 0.0289
µ→r ≈ 0.5426 σ→r ≈ 0.0455
µ→on ≈ 0.6815 σ→on ≈ 0.0554

Table 4: Acceptability judgments and statistical metrics for
“put x touching y” visualizations, conditioned on x move-
ment relative to y

“Near”

Dist (start) P(acc|QU) Dist (end) P(acc|QU)
(0,QU1) N/A (0,QU1) 0.7523
(QU1,QU2) 0.3542 (QU1,QU2) 0.6207
(QU2,QU3) 0.3829 (QU2,QU3) 0.3890
(QU3,QU4) 0.4444 (QU3,QU4) 0.3655
(QU4,∞) 0.4470 (QU4,∞) 0.1295

µstart ≈ 0.4071 µend ≈ 0.4514
σstart ≈ 0.0461 σend ≈ 0.2419

Table 5: Acceptability judgments and statistical metrics for
“put x near y” visualizations, conditioned on distance be-
tween x and y at event start and completion

Movement (M) P(acc|M)
(QU1,QU2)→(0,QU1) 0.7625
(QU1,QU2)→(QU1,QU2) 0.4044
(QU1,QU2)→(QU2,QU3) 0.2232
(QU1,QU2)→(QU3,QU4) 0.1667
(QU1,QU2)→(QU4,∞) 0.0682
(QU2,QU3)→(0,QU1) 0.6848
(QU2,QU3)→(QU1,QU2) 0.5703
(QU2,QU3)→(QU2,QU3) 0.3750
(QU2,QU3)→(QU3,QU4) 0.2788
(QU2,QU3)→(QU4,∞) 0.1488
(QU3,QU4)→(0,QU1) 1.000
(QU3,QU4)→(QU1,QU2) 0.3750
(QU3,QU4)→(QU2,QU3) 0.3750
(QU3,QU4)→(QU3,QU4) 0.5417
(QU3,QU4)→(QU4,∞) 0.2083
(QU4,∞)→(0,QU1) 0.7698
(QU4,∞)→(QU1,QU2) 0.6863
(QU4,∞)→(QU2,QU3) 0.4217
(QU4,∞)→(QU3,QU4) 0.4162
(QU4,∞)→(QU4,∞) 0.1300

µM ≈ 0.4303 σM ≈ 0.2521
µ→(0,QU1) ≈ 0.8043 σ→(0,QU1) ≈ 0.1360
µ→(QU1,QU2) ≈ 0.5090 σ→(QU1,QU2) ≈ 0.1462
µ→(QU2,QU3) ≈ 0.3487 σ→(QU2,QU3) ≈ 0.0865
µ→(QU3,QU4) ≈ 0.3509 σ→(QU3,QU4) ≈ 0.1631
µ→(QU4,QU5) ≈ 0.1388 σ→(QU4,QU5) ≈ 0.0577

Table 6: Acceptability judgments and statistical metrics for
“put x near y” visualizations, conditioned on start and end
distance intervals between x and y

Dist (end) QSR P(acc|QU,QSR)
(0,QU1) behind(y) 0.7730
(0,QU1) in front(y) 0.7349
(0,QU1) left(y) 0.7338
(0,QU1) right(y) 0.7712
(QU1,QU2) behind(y) 0.6701
(QU1,QU2) in front(y) 0.5797
(QU1,QU2) left(y) 0.6675
(QU1,QU2) right(y) 0.5819
(QU2,QU3) behind(y) 0.4151
(QU2,QU3) in front(y) 0.3644
(QU2,QU3) left(y) 0.3945
(QU2,QU3) right(y) 0.3825
(QU3,QU4) behind(y) 0.1713
(QU3,QU4) in front(y) 0.4308
(QU3,QU4) left(y) 0.2093
(QU3,QU4) right(y) 0.4699
(QU4,∞) behind(y) 0.0972
(QU4,∞) in front(y) 0.1401
(QU4,∞) left(y) 0.1250
(QU4,∞) right(y) 0.1348

µend,qsr ≈ 0.4424 σend,qsr ≈ 0.2380
µend=(0,QU1) ≈ 0.7532 σend=(0,QU1) ≈ 0.0218
µend=(QU1,QU2) ≈ 0.6248 σend=(QU1,QU2) ≈ 0.0508
µend=(QU2,QU3) ≈ 0.3891 σend=(QU2,QU3) ≈ 0.0213
µend=(QU3,QU4) ≈ 0.3203 σend=(QU3,QU4) ≈ 0.1518
µend=(QU4,QU5) ≈ 0.1243 σend=(QU4,QU5) ≈ 0.0191
µqsr=beh) ≈ 0.4253 σqsr=beh ≈ 0.2971
µqsr=fr ≈ 0.4500 σqsr=fr ≈ 0.2246
µqsr=l ≈ 0.4260 σqsr=l ≈ 0.2700
µqsr=r ≈ 0.4681 σqsr=r ≈ 0.2362

Table 7: Acceptability judgments and statistical metrics for
“put x near y” visualizations, conditioned on distance be-
tween x and y and POV-relative orientation at event comple-
tion

Discussion
“Touching”
We observe a lower likelihood for visualizations to be
judged acceptable when the moving object moves from
behind the stationary object to in front of it, and vice
versa. P(accept|behind→in front(y)) is approximately
0.4758, which is approximately 1.07 standard deviations be-
low the mean of the population for all starting/ending QSR
relation pairs. This may be explained as an effect of the point
of view imposed by the camera position, which may make
it difficult to see if an object behind another object is actu-
ally making contact and satisfying the EC relation required
by “touching,” especially if a larger object is occluding a
smaller object.

Visualizations where the moving object ends to the left
of the stationary object were also less likely to be judged
acceptable. P(accept|left(y)) is approximately 1.16 standard
deviations below the mean likelihood of acceptance over the
population for all event-end QSR relations. This is appar-
ently independent of the moving object’s starting location
relative to the stationary object, but the dispreference is more
significant for objects that start in front of, or to the right of,
their destination.

• P(acc|in front→left(y)) ≈ 0.4601 ≈ µM - 1.26σM



• P(acc|right→left(y)) ≈ 0.4777 ≈ µM - 1.04σM
This could also be explained as an effect of the POV, in par-
ticular the distortion it causes in cases where larger objects
closer to the camera (including laterally) may occlude ob-
jects further away, making it difficult to assess the satisfac-
tion of the EC relation. Therefore, some objects that move
from the right of another object to the left of it also move
away from the camera, meaning that this effect is analogous
to that seen in the behind(y) relations, and explains the sim-
ilar result seen for in front→left(y) motions. However, this
hypothesis would not explain the absence of a symmetric in-
clination against right(y) relations so more experimentation
or analysis is needed. Some of this may be related to features
of the objects themselves, which are not strongly controlled
for (discussed further in section on future directions).

There is a strong preference for the on(y) specification of
touching(y) over all others, which matches linguistic intu-
ition. “On” necessarily implies an EC relation, which is ex-
pressed in the VoxML (Fig. 1). P(accept|on(y)) falls ap-
proximately 1.52 standard deviations above the mean prob-
ability of acceptability of the population for all event-end
relations. The strongest preference is for motion from be-
hind(y) to on(y), where P(accept|behind→on(y)) is approx-
imately 2.25 standard deviations above the mean likelihood
for acceptability over the whole population conditioned on
start-to-end motion. In terms of point of view effects, this
may be due to an occluded object being brought into view
and very obviously made to touch its destination in a vi-
sualization with no obstructed view. Where “touching” is
an underspecified predicate, the relations entailed by “on,”
while arguably somewhat overspecified as an interpretation
of “touching” alone, seem to most clearly satisfy the qualita-
tive specification of “touching” out of the options available.
Notably, it is the only one not dependent on the relative point
of view, suggesting that the relative point of view introduces
some noise or confusion into the human judgeents, poten-
tially for the reasons discussed above, among others.

“Near”
Unsurprisingly, evaluators preferred visualizations where
the two objects ended up close to each other to those where
the objects ended further apart.

• P(acc|(0, QU1)) ≈ µend + 1.24σend
• P(acc|(QU1, QU2)) ≈ µend + 0.70σend

In the first three distance intervals, we observe a slight
preference for events where the moving object finishes the
event behind the stationary object.

• P(acc|(0, QU1),behind(y)) ≈ µend=(0,QU1),qsr +
0.90σend=(0,QU1),qsr

• P(acc|(QU1, QU2),behind(y)) ≈ µend=(QU1,QU2),qsr +
0.89σend=(QU1,QU2),qsr

• P(acc|(QU2, QU3),behind(y)) ≈ µend=(QU2,QU3),qsr +
1.22σend=(QU2,QU3),qsr

This may be an effect of foreshortening caused by the
point of view, as with some of the “touching” specifications,

which causes an object x which is behind(y) to appear closer
to y than it actually is.

When conditioning on the joint distribution of the dis-
tance interval and the QSR relation, as shown in Table 7,
there is some apparent confusion in judgments of events in
the fourth distance interval, where σ for the population of
P(accept|QSR) is greater than .15, where in all other inter-
vals σ for P(accept|QSR) falls between .019 and .051. This
is possibly a factor of workers being unable to judge purely
from the visuals whether an object that began its movement
from a position in the fourth distance interval relative to the
stationary object actually ended the event nearer than it be-
gan, whereas in preceding intervals, the resulting location
was more likely to be unambiguously “near” regardless of
starting location.

Table 6 shows the judges’ preferences for objects that
moved between the different distance intervals, independent
of direction or orientation. The quintiles were calculated
based on the distributions of distances between objects at
the end of the “put near” event, which is why Tables 5 and
6 show no objects beginning the event in the lowest distance
interval. There is a clear preference for objects that move
from a far interval to a near one, and the inverse is also true,
with very low proportions of “acceptable” judgments for vi-
sualizations where the object moved from a near distance
interval to a farther one. This reinforces the intuition that
a qualitative term like “near” is understood to be inherently
relative (Peters 2007).

Conclusions and Future Directions
As we opted for a focus on relational predicates, our current
evaluation does not control for features of the individual ob-
jects, such as size. These features may be signaled in some
of the feature vectors used to generate the simulations, but
the signal is likely too weak to emerge without explicitly
conditioning on them. Object features may explain some of
the results above, particularly with regard to the occlusion of
objects by other objects and the effects that has on the human
judgments of the visualization’s acceptability with respect
to the input sentence. As object occlusion is a direct effect
of both point of view and object size, such additional con-
trolling may be able to further inform the relevance of POV
to QSR judgments. Additionally, some the questions that
are currently unanswered about this dataset, such as asym-
metries in human judgments (such as the dispreference for
“left” as a specification of “touching” without a similar dis-
preference for “right”), object size, and visual occlusion, can
be subject to similar evaulation methods that specifically tar-
get those parameters as this paper targeted underspecified
predicates using a simulation method, perhaps with a larger
sample of evaluators.

Some of the POV-related effects on the acceptability prob-
abilities shown may also be somewhat affected by the sim-
ulation environment. Viewing any 3D scene on a flat screen
introduces small distortions in perception due the stereo-
scopic effects of rendering three dimensions in a 2D space
(Wann, Rushton, and Mon-Williams 1995), but many of
these, such as foreshortening, are also properties of nat-



ural binocular vision. These may simply be exaggerated
by the virtual environment rather than introduced by it en-
tirely. Using an immersive virtual reality display may or
may not alleviate these issues, as VR technology is currently
wrestling with its own stereoscopic artifacts, but evaluation
using methodology like this, done with a VR headset rather
than a flat screen, would provide an interesting point to test
this hypothesis against.

Simulation and visualization of events provides a method
of rapidly generating data for human evaluation, enabling
broader investigation into human spatial cognition and rea-
soning. A natural language interface like that provided
by VoxSim allows the generation of such experimental
data without specialized skillsets. This has been a goal
of many text-to-scene systems (Coyne and Sproat 2001;
Seversky and Yin 2006; Chang et al. 2015), but VoxSim’s
implementation of motion semantics additionally allows it to
be used as a platform to conduct experiments on the observ-
ables of motion events. The shared visual context between
human and computer forces the handling of object embodi-
ment (Pustejovsky, Krishnaswamy, and Do 2017), allowing
researchers to examine the effects of nonlinguistic qualita-
tive parameters such as point of view, as we have done.

This line of research has potential applications to QR the-
ory in the realm of robotics, following in the vein of Moratz
et al. (2001), by using a multimodal simulation environment
to create a dynamic internal representation of the qualitative
relations between objects that exist in a real-world scene.
With an embodied virtual agent whose structure is isomor-
phic to the structure of a physical robotic agent, simulation
provides a platform to conduct qualitative and probabilistic
reasoning “live” as it moves through the world represented
by its internal scene, able to condition on and control for
effects of POV like those revealed in this paper.

In conclusion, we believe simulation-based approaches
can serve the QR community as a means for computationally
implementing QR theory in real-time applications. They
also provide a method of testing QR frameworks and estab-
lishing boundaries on the types of parameter spaces, such
as relative point of view and linguistic underspecification,
where qualitative approaches might best their quantitative
counterparts in informativity and robustness.
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