
Situated Multimodal Control of a Mobile Robot:
Navigation through a Virtual Environment

Katherine Krajovic, Nikhil Krishnaswamy, Nathaniel J. Dimick,
R. Pito Salas, and James Pustejovsky

Brandeis University Department of Computer Science
Waltham, MA

{krajovic,nkrishna,ndimick,pitosalas,jamesp}@brandeis.edu

Abstract
We present a new interface for controlling a
navigation robot in novel environments using
coordinated gesture and language. We use a
TurtleBot3 robot with a LIDAR and a cam-
era, an embodied simulation of what the robot
has encountered while exploring, and a cross-
platform bridge facilitating generic communi-
cation. A human partner can deliver instruc-
tions to the robot using spoken English and
gestures relative to the simulated environment,
to guide the robot through navigation tasks.

1 Introduction
Recent developments in HRI have given rise to new
capabilities in how we communicate with and con-
trol robotic devices, including navigational robots
(Tellex et al., 2020). Key to this change is the
emergence of language interfaces, which have al-
lowed for more familiar and natural interactions
with robots through language in limited dialogue
settings (Roque et al., 2020). Another communica-
tive avenue that has recently emerged is the use of
gesture (Williams et al., 2019). What is still lack-
ing, however, is the ability to interact with a robotic
agent multimodally, with integrated language and
gesture in a dynamic communication.

Here, we describe a human-robot interaction
through the integration of multiple modalities in
VoxWorld, a platform for modeling and communi-
cating with computational agents, which contains
a simulation environment and a semantic model
interpreted with the language VoxML (Pustejovsky
and Krishnaswamy, 2016). Simulation plays a crit-
ical role in communication between humans and
robots by creating a shared common ground (epis-
temic model) of the co-inhabited environment. The
simulation demonstrates the knowledge held by the
robot publicly, which is needed to ensure shared
understanding with the humans in the activity.

In our system, a human user and a robot exist
in a co-situated space that is mediated by a virtual

environment displayed on a screen, such that the
human can see a virtual rendition of the environ-
ment the robot has explored, and of the robot’s
current perspective view. The human can then ges-
ture to objects and locations on the screen, either in
a perspective or omniscient view, and speak about
them in English, e.g., “go there,” “go to that waste-
basket and turn around,” or “find the blue block.”
Deictic gestures are grounded to coordinates on the
screen which are transformed to equivalent coordi-
nates in the robot’s ROS environment, allowing the
robot to execute native navigation commands, e.g,
go to(x, y). The robot can likewise communicate
status updates back to the human which are then
spoken out through text-to-speech.

2 VoxWorld Platform
VoxWorld is the simulated situated grounding plat-
form that facilitates communication between hu-
mans and intelligent agents, here a robot. It is
built on VoxML, which encodes object, event, and
relation semantics exploitable by computational
reasoners in simulated environments.

The Unity game engine-based software VoxSim
(Krishnaswamy and Pustejovsky, 2016) visualizes
events from VoxML encodings, and provides the
virtual environment in which VoxWorld agents per-
ceive and reason about their surroundings.

Situated environments in the VoxWorld platform
provide agents a dynamic point-of-view in a vir-
tual or simulated world. The virtual worlds assume
an embodiment of the agent in the environment,
and VoxWorld provides a platform for the agent to
express its interpretation of the world via its em-
bodied theory of mind (Johnson-Laird and Byrne,
2002). The agents present semantic interpretation
of linguistic expressions, object perception, and en-
vironmental awareness through a simulation (Puste-
jovsky and Krishnaswamy, 2019).

VoxSim (and VoxWorld) contains a neural model

of underspecified motion verb parameters (Krish-
naswamy, 2017) that assigns them appropriate val-
ues to operationalize predicates in terms of primi-
tives like “translate” and “rotate,” the same primi-
tives executable by a real robotic agent (§ 3.1).

3 Robotic Agent
The robotic agent we have developed, dubbed
“Kirby,” uses a Turtlebot3 from Robotis, with dif-
ferential drive, non-holonomic steering, further
equipped with a LIDAR (laser-based distance sen-
sor) and a color camera. The robot has two compute
boards: an Arduino-based OpenCR controlling the
motors, and a Raspberry Pi running Linux and ROS.
ROS, the Robot Operating System, is a distributed
operating system widely used in research and in-
dustry. The robot operates on a flat floor with walls
forming corridors, corners, openings, etc. with
Aruco fiducials denoting known physical objects.

Figure 1:
TurtleBot3.

Our lab was suddenly closed
due to the COVID-19 pandemic,
restricting access to physical
robots, which led us to a fully
simulated scenario, using the the
Gazebo simulation platform, a
well established and powerful 3D
simulation environment. Gazebo

provides both the simulation of the physical sur-
roundings of floor plane, walls, corridors, 3D space,
and simple physics (mass, weight, friction, grav-
ity), as well as the simulation of the TurtleBot3
Robot itself, including physical characteristics (e.g.,
shape, mass) and dynamic simulation of its motors,
wheels, sensors and computation. The simulated
robot will respond to precisely the same commands
as the physical robot. There is a degree of random-
ness in the physical world (e.g. a bump in the carpet
or change in lighting) which is not fully simulated.

3.1 Specifications, Abilities, Parameters
Kirby supports several basic movement commands,
including: go forward, go to, turn left, turn right,
and patrol. A “go forward” command takes an op-
tional parameter x (default 1m) and moves Kirby x
meters ahead of its current location. “Go to” takes
x and y and moves Kirby to the specified (x, y) co-
ordinate on its map. To execute both of these, Kirby
will navigate around any obstacles that it encoun-
ters. A “turn left” or “turn right” command takes an
optional parameter d (default 90◦), and turns Kirby
d◦ counter-clockwise or clockwise respectively.

“Patrol” takes optional parameters s, r, i. Kirby
explores its environment in concentric s-sided poly-

gons with vertices r meters from the origin, and ver-
tices of each subsequent polygon i meters greater
than the previous; defaults are 16 sides, initial ra-
dius of 1.5m and increment of 1.0m.

Kirby can take in multiple commands and will
execute them in order. It also supports flow of con-
trol commands stop, continue, cancel/cancel all,
and go back. “Stop” pauses the movement Kirby
is in the process of executing, while “continue” un-
pauses it. “Cancel” deletes the current movement
from its execution queue, and “cancel all” deletes
all movements in the queue. “Go back” deletes all
queued movements and also sends Kirby back to
the location it was in before the current movement.

3.2 Environment

The environment Kirby operates in consists of three
major elements: Robots (either physical or simu-
lated), the Robotic Services Bridge (RSB) and the
Unity-based VoxSim environment described above.
These descriptions of the environment apply to both
the physical robot and the simulated robot.

3.2.1 Fiducials

Fiducial markers denote specific points and
directions in space. Typically in robotics
they are square black and white signs, ap-
proximately 10 × 10cm, akin to QR Codes.

Figure 2: Two fiducials.

With a camera and
appropriate software,
the robot can detect
fiducials, and specifi-
cally their distance and

orientation relative to the camera (using the known
size of the fiducial and perspective distortion.)
The fiducial can also encode a numeric identifier.
When the robot’s camera first sees a fiducial, its
location, orientation and identifier are reported
through RSB.

3.2.2 Robotic Services Bridge

RSB is designed to enable control and supervision
of robots to other systems in a flexible, platform-
independent way. RSB maintains a distributed and
shared key-value store accessible by any client such
as Kirby. All communication, commands and mon-
itoring of the robotic side is done by reading and
writing keys (see Table 1) in this shared store (im-
plemented as a Redis cache. cf. (Tzafestas and
Tzafestas, 1991)).

Key Function
MAP Obstacles (walls) the robot has encoun-

tered, represented as line segments com-
puted from LIDAR data using a line seg-
ment merging method (Tavares and Padilha,
1995).

ODOM Current location, direction, forward and ro-
tational velocity of the robot.

KIRBY Commands from VoxWorld to Kirby (see
§ 3.3).

FIDUCIALS List of detected fiducials, including identi-
fier and 3D location/orientation.

KIRBY Stream of status information for
FEEDBACK communicating to the user and trou-

bleshooting.
BRIDGE Commands to reset the RSB.
RESET

Table 1: Keys of the Robotic Services Bridge.

3.3 Communication and Control

As Kirby navigates its environment, line segments
generated from the LIDAR data as well as posi-
tion and speed updates are posted to the MAP and
ODOM channels of the RSB. Fiducials encountered
are posted to the FIDUCIALS channel. Kirby’s
VoxWorld environment listens for updates on these
channels and builds a simulated visualization of
what Kirby encounters for its human partner to
see and interpret (Fig. 3). The virtual environ-
ment presents the interpreted realspace data from
Kirby’s perspective and from an omniscient bird’s-
eye view. Kirby’s perspective updates as Kirby
moves through the environment, and the human
can navigate the bird’s-eye view using mouse and
keyboard, but also real-time recognized gesture,
e.g, push left/right to switch camera views, or servo
left/right/back to rotate the camera (see § 3.3.2 for
the default gesture list).

At startup, Kirby will provide a map of the world
from its initial perspective (§ 3.3.1). The user can
give spoken commands and gesture to regions or
fiducials, which are currently used as proxies for
objects of interest, in the VoxWorld rendering. In-
terpretations of these instructions are then commu-
nicated back to Kirby through the RSB’s KIRBY

channel (§ 3.3.2).

As Kirby executes instructions and uncovers
larger portions of the world, the map, as well as
the position and orientation of Kirby’s “avatar”
in VoxWorld will update over time. Kirby pro-
vides feedback codes (published on the RSB’s
KIRBY FEEDBACK channel) to indicate status, suc-
cess, failure, or the need for user input, which are
transformed into messages displayed on screen in
VoxWorld and spoken aloud using text-to-speech.

Figure 3: Visualized LIDAR data (L) and Kirby’s Vox-
World interpretation (R). The main view shows an om-
niscient view and the inset shows Kirby’s perspective.

3.3.1 Map Interpretation

2D line segment endpoints (a1,b1,a2,b2) transform
from ROS space to Unity as ‖(−b2, a2) −
(−b1, a1)‖-meter-long cuboids at XZ-coordinates
((−b1.x,a1.x)+(−b2.x,a2.x)

2 , (−b1.z,a1.z)+(−b2.z,a2.z)
2),

rotated −sin−1(|(−b2, a2) − (−b1, a1)|.z) ×
sgn(|(−b2, a2)− (−b1, a1)|.x) radians around the
Y-axis.

Being extracted from LIDAR data, these impre-
cise line segments may change, merge, or vanish
as Kirby navigates through the world. This con-
stant variation presents difficulties for the human
partner, as a certain consistency is required for an
interpretable world. To combat this, and present
an interpretable simulated view to the human part-
ner, we annotate raw LIDAR-derived line segments
relative to the ground truth, with an action space
of aligning and closing gaps between pairs of line
segments (Fig. 4). We then train a 4-layer deep
neural network on this data to determine additional
transformations to be made in Unity space.

Figure 4: Sample
ground truth (white)
and annotated LIDAR-
derived line segments
(color).

This presents a more
consistent and cohesive
interpretation of the
world to the human
partner, that becomes
more accurate as Kirby
approaches obstacles.

3.3.2 Speech
and Gesture

Through VoxSim and the
RSB, Kirby consumes in-
structions from the human partner in spoken En-
glish. These commands can be those enumerated in
§ 3.1, or instructions like “go to the first fiducial on
the right,” that are parsed and executed through the
VoxSim-based event manager. Kirby can also “see”
the human through custom gesture recognition run-
ning on deep convolutional neural networks trained
over Microsoft KinectTM data (McNeely-White

et al., 2019). By default there is a fixed gesture
set that the system responds to (cf. Li (2012)), in-
cluding pointing, thumbs up/down, a “claw,” push
left/right, beckon, and “servo” (an iterated push or
“nudge”) left/right. The system can use random
forests to learn new gestures “live” (cf. Matuszek
et al. (2014)), which can be linked with linguistic
instructions, e.g., an L shape for“go forward 1m,
turn right, then go forward 2m.”

The user can point to locations or objects in
the VoxWorld environment and ground their in-
structions to those entities, e.g., “go there,” “go
to that one,” “turn this way,” “a little further,” etc.
This diversity of commands reflects how different
modalities ground different types of information
(e.g., descriptive language for “first block on the
right” vs. deictic gesture and/or demonstratives
for locations—“there”). User input is interpreted
into sequences of basic commands (§ 3.1) that are
pushed onto Kirby’s eponymous command queue.
If a linguistic instruction fails due to either poor
speech recognition or parsing failure, Kirby will
either not respond or reply with a message “I didn’t
understand” or similar. The human can additionally
use gesture to communicate if language fails.

Instructions from Kirby’s human partner must be
situated in the world that Kirby inhabits, including
distinct object resolution and specific coordinate
localization. Coordinates are transformed from
Unity space to ROS space ((−b1, a1), (−b2, a2)→
(a1, b1), (a2, b2)) so the robot can execute com-
mands using native functionality.

While executing, Kirby publishes feedback to
the user. It sends an update when beginning or
completing a movement, or if it determines that a
goal is unachievable (e.g., “looking for path to (x,
y),” “successfully navigated to (x, y),” “unable to
complete goal”). It also publishes messages if goals
are canceled, paused, or resumed (e.g., “paused
current goal,” “canceled [all] goal(s),” “restarting
current goal,” “waiting for commands”).

If, in attempting to complete a movement, Kirby
begins navigation but then determines it cannot
reach the goal location, it requests input as to
whether it should go back to its original location or
continue executing from the new location (“moved
from expected path and failed to reach goal,” “user
input is required: keep going OR go back”).

4 Scenario and Evaluation
A typical scenario begins with Kirby entering a
new space. The human gives navigation commands

such as “go forward” or “patrol” and as the robot
discovers more of the environment, it sends infor-
mation back to VoxWorld to construct the simu-
lated representation, including fiducials represent-
ing notable objects. In Fig. 3, Kirby detects 5 fidu-
cials (visualized as boxes)—3 on the right and 2 on
the left. The human determines a target for Kirby
and communicates it in English, e.g., “go to the
first one on the right.” “First one on the right” is
situated in VoxWorld and resolved to specific coor-
dinates which are then communicated to Kirby with
a go to instruction. Kirby, while navigating to the
target, encounters an obstacle and has to go around
it, perhaps finding along the way that there is no
path to the desired location. This is communicated
back to the human: “user input is required: keep
going OR go back.” The human, being able to see
the simulation both in the bird’s-eye view and from
Kirby’s perspective, can point to an achievable lo-
cation near the target object (the purple circle in
the inset of Fig. 3), and tell Kirby “go there.” The
updated coordinates are then sent to the robot.

As this system is very new, evaluation is still
being planned. We plan to give participants a target
object to find that they then have to direct Kirby
towards, with no prior language coaching and a ver-
bal description of the gestures and evaluate time to
completion and usage of various modal techniques.

5 Conclusion and Discussion
If a robot can receive information from a human
collaborator in a linguistic or gestural modality and
interpret that relative to its current physical circum-
stances, it can create an epistemic representation
of the information provided by the human. In the
absence of any modality of expressing that repre-
sentation independently, the human cannot verify
or query what the robot agent is actually perceiv-
ing or how that perception is being interpreted. A
simulation environment, such as VoxWorld pre-
sented here, provides a venue for the human and
robot to share an epistemic space, and any commu-
nicative modality that can be expressed within that
space (e.g., linguistic, visual, gestural) enriches
the number of ways that a human and a robot can
communicate on object and situation-based tasks.

Scenarios such as § 4 serve as proxies for situa-
tions where robots assist humans in environments
where humans cannot go safely, e.g., a burning
building or constricted space, but must rely on the
interpretive capacity and background knowledge
of humans to complete their task.

References

Philip N Johnson-Laird and Ruth MJ Byrne. 2002.
Conditionals: a theory of meaning, pragmatics, and
inference. Psychological review, 109(4):646.

Nikhil Krishnaswamy. 2017. Monte-Carlo Simulation
Generation Through Operationalization of Spatial
Primitives. Ph.D. thesis, Brandeis University.

Nikhil Krishnaswamy and James Pustejovsky. 2016.
VoxSim: A visual platform for modeling motion lan-
guage. In Proceedings of COLING 2016, the 26th
International Conference on Computational Linguis-
tics: Technical Papers. ACL.

Yi Li. 2012. Hand gesture recognition using kinect. In
2012 IEEE International Conference on Computer
Science and Automation Engineering, pages 196–
199. IEEE.

Cynthia Matuszek, Liefeng Bo, Luke Zettlemoyer, and
Dieter Fox. 2014. Learning from unscripted deictic
gesture and language for human-robot interactions.
In AAAI, pages 2556–2563.

David G McNeely-White, Francisco R Ortega, J Ross
Beveridge, Bruce A Draper, Rahul Bangar, Dhruva
Patil, James Pustejovsky, Nikhil Krishnaswamy,
Kyeongmin Rim, Jaime Ruiz, et al. 2019. User-
aware shared perception for embodied agents. In
2019 IEEE International Conference on Humanized
Computing and Communication (HCC), pages 46–
51. IEEE.

James Pustejovsky and Nikhil Krishnaswamy. 2016.
VoxML: A visualization modeling language. Pro-
ceedings of LREC.

James Pustejovsky and Nikhil Krishnaswamy. 2019.
Situational grounding within multimodal simula-
tions. arXiv preprint arXiv:1902.01886.

Antonio Roque, Alexander Tsuetaki, Vasanth Sarathy,
and Matthias Scheutz. 2020. Developing a corpus
of indirect speech act schemas. In Proceedings of
The 12th Language Resources and Evaluation Con-
ference, pages 220–228.

João Manuel Ribeiro Silva Tavares and Armando Jorge
Monteiro Neves Padilha. 1995. A new approach
for merging edge line segments. Proceedings Rec-
Pad’95, Aveiro.

Stefanie Tellex, Nakul Gopalan, Hadas Kress-Gazit,
and Cynthia Matuszek. 2020. Robots that use lan-
guage. Annual Review of Control, Robotics, and Au-
tonomous Systems, 3:25–55.

Spyros Tzafestas and Elpida Tzafestas. 1991. The
blackboard architecture in knowledge-based robotic
systems. In Expert systems and robotics, pages 285–
317. Springer.

Tom Williams, Matthew Bussing, Sebastian Cabrol,
Elizabeth Boyle, and Nhan Tran. 2019. Mixed real-
ity deictic gesture for multi-modal robot communi-
cation. In 2019 14th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), pages
191–201. IEEE.

