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Abstract. This paper details the technical functionality of VoxSim, a
system for generating three-dimensional visual simulations of natural lan-
guage motion expressions. We use a rich formal model of events and their
participants to generate simulations that satisfy the minimal constraints
entailed by an utterance and its minimal model, relying on real-world
semantic knowledge of physical objects and motion events. This paper
outlines technical considerations of such a system, and discusses the im-
plementation of the aforementioned semantic models as well as VoxSim’s
suitability as a platform for examining linguistic and spatial reasoning
questions.
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1 Introduction

Spatial expressions in natural language rely on a wealth of world knowledge and
contextual information about the properties of objects and events discussed in
order to arrive at a complete interpretation of the utterance in question, making
them difficult to translate into visuals. Linguistic predicates encode a certain
level of knowledge that affords using them for spatial reasoning, but the level of
spatial information varies for each predicate, such that many expressions leave
certain parameters underspecified.

Existing work in visualization from natural language has largely focused on
object placement in static scenes [7,9,43]. We have recently introduced a focus
on motion verbs, using a rich formal model of events, and relying on philosoph-
ical and cognitive science approaches to linguistic interpretation, to integrate
dynamic semantics into our system of event visualization, in simulations of the
associated actions [37,38].

In philosophy, “mental simulation” theory attempts to model everyday hu-
man psychological competence [29], providing a process driven theory of mind
[22]. In cognitive linguistics, “simulation” has come to mean a mental instantia-
tion of a linguistic utterance, playing a functional role in language understand-
ing [4,14], based on the notion of an agent’s embodiment, as also discussed by
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Narayanan and others [33]. This provides a shared semiotic structure exploitable
by both a computer (as a minimal model [6,19]) and a human (via sensory inter-
pretation). Finally, both Qualitiative Spatial Reasoning (QSR) and gaming-style
AI approaches have been used to develop simulators for training driven by in-
teractive narratives [10,16], which makes procedural simulation from language
expressions a natural candidate for fast-prototyping of new scenarios.

In a dynamic semantics approach, verbs are treated as programs or processes
[27] and so although the computational linguistics and cognitive linguistics com-
munities do not often reference each other, in our opinion there is fertile ground
for cross-pollination, starting with the approach of Pustejovsky and Moszkow-
icz [40], and for implementing language-based reasoning in a QSR framework,
leveraging temporal and spatial calculi such as the Allen Temporal Relations [2]
and the Region Connection Calculus (RCC) [17,18,42].

We previously presented a method for visualizing natural language expres-
sions in a 3D environment built on the Unity game engine [37]. The goal of that
work was to evaluate, through visualization, the semantic presuppositions inher-
ent in differing lexical choices. Thus, we assert that the amount and nature of
spatial information encoded in a predicate can be revealed through simulation,
of which visualization is just one modality of expression. We developed VoxML
[38], a modeling language which encodes object and event semantic information
into voxemes or “visual object concepts,” structured and stored in a voxicon
(the “lexicon” of voxemes). This approach enables procedural simulation gener-
ation from semantic knowledge of an event and its participants. Using a notion
of action verbs as programs [34,40], our system, given an utterance and scene
containing all referenced nominals as 3D objects, enacts the verbal program over
them.

This method of abstracting and composing objects and programs allows us
to take a semantically complex natural language predicate, such as “lean” or
“switch,” enacted over arbitrary objects within the system’s vocabulary, and
immediately generate a visualization if such a verbal program can be executed
over the mentioned objects.

Fig. 1. Visualization of “lean the cup on the block”
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Fig. 2. Visualization of “switch the blocks”

The remainder of this article describes the technical functionality of this
system, VoxSim, and its utility as a platform for experimentation in linguistic
and context-based reasoning.

2 Architecture

VoxSim uses the Unity game engine [23] for graphics and I/O processing.1

Input is a simple natural language sentence, which is part-of-speech tagged,
dependency-parsed, and transformed into a simple predicate-logic format. These
Natural Language Processing (NLP) tasks are currently handled by external ap-
plications networked to the simulator: we have interfaces for several parsers and
resources, including the ClearNLP parser [8], SyntaxNet [3], and the TRIPS
parser [15]. 3D assets and VoxML-modeled nominal objects and events (created
with other Unity-based tools) are loaded externally, either locally or from a web
server. Commands to the simulator may be input directly to the software UI, sent
over a generic network connection, or selected within the VoxSim Commander
application, a companion app for iOS. A diagram of the VoxSim architecture is
shown in Fig. 3, and the front-end UI is shown in Fig. 4.

UnityiOS

Simulator
Communications

Bridge
VoxSim

Commander

Parser VoxML Resources

Art
Assets

Fig. 3. VoxSim architecture schematic

1 The VoxSim Unity project and source may be found at
https://github.com/VoxML/VoxSim/. The latest stable builds are posted at
http://www.voxicon.net/.

https://github.com/VoxML/VoxSim/
http://www.voxicon.net/
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Fig. 4. VoxSim UI with sample scene

Objects from the library may be part of pre-built scenes made in the Unity
Editor or may be placed in the scene by users at runtime using the “Add Object”
menu. Users may enter input in the upper left or over network connection via
VoxSim Commander. Output from VoxSim is printed in the upper right.

Given a tagged and dependency-parsed input sentence as shown in Fig. 5, we
can transform it into predicate-logic format using the root of the parse as the
VoxML program, which accepts as many arguments as are specified in its type
structure, and subsequently enqueuing any arguments that are either constants
(i.e., instances of VoxML objects) or evaluate to constants at runtime (all
other VoxML entity types, applied over objects). Other non-constant VoxML
entity types are treated similarly to programs, though they usually accept only
one argument. Thus, the dependency arc case(plate, on), for example, becomes
on(plate). The resulting predicate-logic formula is evaluated from the innermost
first-order predicates outward until a single first-order representation is reached.

2.1 VoxML Overview

VoxML (Visual Object Concept Markup Language), is a modeling language for
constructing 3D visualizations of natural language expressions [38]. It forms the
scaffold used to link lexemes to their visual instantiations, or voxemes. There
may be many-to-many correspondences between lexemes and their associated
voxemes. For example, the lexeme plate may be visualized as a square plate or
a round plate, which would be different voxemes, and a single visual object may
be referred to by multiple lexemes.

Each voxeme is linked to an object geometry (nouns are objects in VoxML),
a dynamic logic program (verbs are VoxML programs), an attribute set (VoxML
attributes), or a transformation algorithm (VoxML relations or functions).
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put/VB the/DT apple/NN on/IN the/DT plate/NN

DET

DOBJ CASE

DET

NMOD
ROOT

1. p := put(a[]) 5. nmod := on(iobj)
2. dobj := the(b) 6. iobj := the(c)
3. b := (apple) 7. c := plate
4. a.push(dobj) 8. a.push(nmod)

put(the(apple),on(the(plate)))

Fig. 5. Dependency parse for Put the apple on the plate and transformation to
predicate-logic form.

VoxML is used to specify the “episemantic” information beyond that which can
be directly inferred from the linked geometry, Dynamic Intervsal Temporal Logic
(DITL) program [40], or attribute properties.

An object voxeme’s semantic structure provides habitats, or situational con-
texts or environments which condition the object’s affordances, or attached be-
haviors describing what can be done to the object [36]. Habitats established by
previous actions may activate or deactivate certain affordances, as when flipping
a cup over prevents objects from going inside it.

3 Linguistic and Semantic Analysis

From tagged and parsed input text, all noun phrases are indexed to objects in the
scene. A reference to a ball causes the simulator to attempt to locate a voxeme
instance in the scene whose lexical predicate is “ball,” while an occurrence of a
block prompts an attempt to locate a voxeme with the lexical predicate “block”.

Attributive adjectives impose a sortal scale on their heads [38], so small block
and big block single out two separate blocks if they exist in the scene, and the
VoxML-encoded semantics of “small” and “big” discriminates the blocks based
on their relative size. red block vs. green block results in a distinction based on
color, a nominal attribute, while big red block and small red block introduce
scalar attribution, and can be used to disambiguate two distinct red blocks by
iteratively evaluating each interior term of a formula such as big(red(block)) until
the reference can be resolved into a single object instance in the scene that has
all the signaled attributes2. The system may ask for clarification (e.g., “Which
block?”) if the object reference is still ambiguous.

2 See [39] for details on discriminating and referencing objects through sortal and
scalar descriptions.
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ball

lex =

 pred = ball
type = physobj, artifact



type =



head = ellipsoid[1]
components = nil
concavity = convex
rotatSym = {X,Y, Z}
reflectSym = {XY,XZ, Y Z}


habitat =

 Intr = ...

Extr = ...


afford str =

 A1 = H → [grasp(x, [1])]hold(x, [1])
A2 = H → [roll(x, [1])]


embodiment =

 scale = <agent
movable = true





Fig. 6. Ball voxeme markup. VoxSim references voxemes by their lexical predicates.

We use a basic set of primitive programs to represent verbs, from which we
build more complex programs. There have been many previous attempts to group
verbs into distinct clusters, based on syntactic behavior [26], or to associate verbs
with specific spatial semantic primitives [32]. Frameworks from the computer
vision and AI communities include work on representing traffic configurations
and behavior [20] and in human-robot communication [13,44]. VoxML follows
a similar model-theoretic approach, using an underlying semantics of a hybrid
dynamic logic, Dynamic Interval Temporal Logic (DITL) [40]. Program content
is then operationalized with the intent of decomposing the verbal and relational
semantics while leaving object category labels intact, similar to approaches that
seek to overcome descriptive constraints limited by robotic perception [31,41].

In a 3D environment, any complex motion can be decomposed into series and
compositions of translations and rotations, making those obvious verbal primi-
tives in our visualization system. Other primitives include commonly-repeating
subevents of other motions, such as “grasp,” a fine-grained motion of the fingers
that is difficult to decompose but appears as a subevent of nearly any human-
object interaction. We can then assemble complex events out of primitive mo-
tions, as in “put” in Fig. 8, and then macro-complex events, such as “stack” as
a sequence of “put” events.

3.1 Habitats and Affordances

We assume that every voxeme exists within an intrinsic “habitat” [36,30], an
encoding of the environment in which the object must exist simply to avoid
violating any physical constraints, such as gravity, and conditions under which
an object typically exists in the world.

An object’s habitat introduces two parameters: it specifies how it is situated
within a minimal embedding space (local embodiment); and by so doing this,
it contextualizes the object, by making reference to the object’s “affordances,”
i.e., the correlations between an agent who acts on an object and systematic or
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prototypical effects. For instance, a pencil at rest must be laying flat and not
resting on its tip. While a table can be situated in almost any orientation, it has
an intrinsic “top,” its surface, as can be inferred from common utterances such
as “the table is upside down”. In a typical configuration, an object’s inherent
top will be aligned to the world’s upward vector, so we denote this in VoxML
with top = top(+Y ). Being able to identify this as a habitat allows VoxSim
to then reason about what behaviors and resultant states are afforded by that
object in that configuration.

A voxeme’s semantic structure provides both “Gibsonian” and “telic” affor-
dances [21,35,36], or attached behaviors, which the object either facilitates by
its geometry (Gibsonian) [21], or purposes for which it is intended to be used
(telic) [35]. For example, a Gibsonian affordance for a cup is “grasp,” while a
telic affordance is “drink from.” Following from the convention that agents of a
VoxML program must be explicitly singled out in the associated implementa-
tion by belonging to certain entity classes (e.g., humans), affordances describe
what can be done to the object, and not what actions it itself can perform. Thus
an affordance is notated as habitat → [event]result, and an instance such
as H[2] → [put(x, on([[1]])]support([[1]], x) can be paraphrased as “In habitat-2, an
object x can be put on component-1, which results in component-1 supporting
x.” This procedural reasoning from habitats and affordances, executed in real
time, allows VoxSim to infer the complete set of spatial relations between objects
at each state and track changes in the shared context between human and com-
puter. Thus, simulation becomes a way of tracing the consequences of linguistic
spatial cues through a narrative.

3.2 Predicate-Argument Interaction

VoxML treats objects (NPs) and events (predicates) in terms of a dynamic event
semantics, DITL [40]. The verbal semantics is based on a type system that
encodes how a given formula φ and proposition π are executed/tested during the
execution of a verbal program; programs can be a state, process, transition,
assignment, or test, all of which are translated into DITL and operationalized
differently.

This dynamic interpretation of events allows VoxSim’s VoxML implementa-
tion to map linguistic expressions directly into simulations through an opera-
tional semantics that interprets predicates relative to their arguments’ semantic
encoding. Argument-sensitive distinctions in the operationalization of predicates
themselves exploit the head of the argument’s type structure—a selected subset
of geometric faces wholly or partially coterminous with the entire object geom-
etry. This can be illustrated through the respective encodings for on and in. As
shown in Fig. 7, both are configurational relations, but on requires the objects
to be EC while in requires the figure object to be wholly or partially contained
by the ground object. These relate directly to the affordances of an item. For
instance, putting some object on a cup results in a support relation between the
two, while putting an object in the cup results in a containment relation.
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Additionally, the two relations specify different constraints. The spatial re-
lation on requires the point of contact between the two objects to be located
along the axis defined by a formula that will be found in the intrinsic habitat of
the ground object and denoted with the notation align, subject to the full set
of constraints that define that habitat. One such example would be the habitat
constraints {align(Y, EY ), top(+Y )} for a cup, where placing an object x on(cup)
requires contact between x and cup to be along the positive Y-axis (either of the
cup or the world). Meanwhile, to put some object x on an object with an inher-
ent orientation defined relative to a different surface, such as a wall with a facing
surface or a TV with a screen, VoxSim exploits that object’s habitat constraints
{align(Y, EY ), front(+Z)}, and aligns x’s Y-axis with the destination object’s
Y-axis, and x’s front (if any defined), with the destination’s front. However, the
point of contact between the two objects in this situation is not concretely de-
fined. The VoxML encoding leaves both faces along the +Y axis and faces along
the ground object’s +Z axis as viable candidates for contact points. That is,
assuming regions respectively satisfying these mutually exclusive constraints are
both unobstructed, an item such as a picture could be “on” a television or a wall
in either configuration. Such an open question becomes a prime area for using
simulation as an experimentation platform. This is discussed in section 4.

Meanwhile, the spatial relation in enforces a constraint that requires a test
against the current situational context before a value assignment can be made.
An example is given in Fig. 9 of a knife in a cup. If the “placed object” is too
large to fit inside the object it is to be placed in, VoxSim conducts a series
of calculations to see if the object, when reoriented along any of its three or-
thogonal axes, will be situated in a configuration that allows it to fit inside the
region bounded by the ground object’s containing area. The containing area is
situated relative to one of the ground object’s orthogonal axes, and which axis
and orientation this is is encoded in the ground object’s VoxML type semantics.
For example, a typical cup has some rotational symmetry around its Y-axis, as
well as reflectional symmetry across its XY- and YZ-planes. These parameters
compose with the cup’s specification as a concave object to encode a concavity
opening along the Y-axis, and the additional top(+Y ) habitat constraint further
situates this opening along the object’s positive Y-axis. Thus, as seen in Fig. 9,
the knife must be reoriented so that its world-space bounding box aligning with
the cup’s Y-axis is smaller than the bounds of the cup’s opening in that same
configuration.

A typical wall with uniform surface topology affords no containment in either
a Gibsonian or telic sense: however, something like a picture hanging on the wall
may be interpreted as being contained by the bounds of the wall’s surface, and
this involves coercing the wall to its surface as a 2D region in order to satisfy
one of the eight basic 2D relations in the Region Connection Calculus, whereas
the wall voxeme taken as a whole is a 3D object. On the other hand, something
interpenetrating the wall (perhaps by application of enough force), as in the left
image of Fig. 10, would satisfy the PO configuration required by in.

In Fig. 8, “put” is given arguments agent, obj1, and rel(obj2), where rel

refers to the class of spatial functions including on and in. The typing of both
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on
lex =

[
pred = on

]

type =



class = config
value = EC

args =

 a1 = x:3D
a2 = y:3D


constr = y→habitat→

intr[align]







in
lex =

[
pred = in

]

type =



class = config
value = PO ‖ TPP ‖

NTPP

args =

 a1 = x:3D
a2 = y:3D


constr = y→habitat→

intr[align]?





Fig. 7. VoxML structures for “on” and “in,” showing distinction in configurational
value and constraints. The question mark in the typing of “in” denotes the test men-
tioned previously.



put

lex =

 pred = put
type = transition event



type =



head = transition

args =


a1 = agent
a2 = obj1
a3 = rel(obj2)



body =


e1 = grasp(A1, A2)
e2 = [while(hold(A1, A2),move(A2))]
e3 = [at(A2, A3) → ungrasp(A1, A2)]







Fig. 8. VoxML structure for “put”

“put” and “on” encode the calculation of such parameters as object trajectory
and destination location (e.g., the position denoted by on(block) vs. on(plate)
or on(wall)). As seen in body, object A2 is moved to location A3, calculated
by operationalizing the specified relation over obj2. The results, depending on
the arguments, may be configurations such as those shown in Figs. 9-11.

Fig. 9. “In the cup” vs. “on the cup”

In Figs. 9-11 we can see the visualizations of the composition of these typing
distinctions. The expression on(wall) selects for a vertical face of the object
while in all other examples, on selects for the object’s top. The location of
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Fig. 10. “In the wall” vs. “on the wall”

Fig. 11. “On the table” vs. “on the wall” vs. “on the plate”

“top” is computed based on the object’s VoxML type structure. The top of a
plate, a slightly concave object when situated in its default habitat, is located
slightly lower on the Y-axis than the plate’s highest overall point. The expression
in(cup) selects the interior surface of the cup, an object with a telic affordance
of containment, while in(wall) explicitly interpenetrates the wall, as “wall”
lacks the containment telic role. The system attempts to maximally satisfy the
constraints placed upon it by the NL expression. For instance, placing the knife
object on(cup) lays the knife across the rim of the upright cup. In the same
(horizontal) orientation, the knife cannot be placed at the location computed by
in(cup), so the system must transform the knife so that the RCC representa-
tion of in(cup), PO(knife, cup), can be satisfied without violating any of the
physical or structural constraints of the cup or knife objects.

As events proceed, VoxSim maintains the current set of relations that exist
between every pair of objects in the scene. The currently-implemented reasoning
approach is built on top of RCC, particularly variants for relations in 3D space
[1], but it can easily be extended to other QSR approaches, including the situa-
tion calculus [5], and the Intersection Calculus [25,28]. Where the spatial reason-
ing calculus may leave certain parameters underspecified, the object, relation,
and event VoxML encodings allow additional parameters to inform VoxSim’s
reasoner in attempting to visualize a situation in accordance with the mental
instantiation of the utterance provided, such as determining the angle of entry
for an object into a cup, as in the example discussed in Section 3.2.

In some cases, even the combined force of spatial reasoning calculi and VoxML
will not be enough to unambiguously supply all information missing from the
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linguistic utterance to create an adequate simulation: this is, of course, fertile
ground for experimentation.

4 Underspecification

When constructing minimal models, it is common to leave certain parameters
underspecified [19]. That is, it is permissible for a model to contain the propo-
sition “the ball rolled” without providing information such as direction, speed,
size of the ball, friction between the ball and the supporting surface, etc.; this
information can be specified, but the model is still considered complete without
it. On the other hand, when a ball rolls in the real world, these model-unspecified
parameters all have values assigned to them, even if those values are not specif-
ically measured. Likewise, a simulation of the same event requires that certain
of these parameters be specified in order for the verbal program enacted over
the arguments actually to be executed from frame to frame. Certain parame-
ters, such as the precise location indicated by a relation over an object, can be
calculated from the composition of the program and objects as discussed above
in Section 3, while others are either not encoded in the semantics at all or the
semantic composition leaves the value imprecise or ambiguous.

4.1 Current Results of Simulation Output

From the composition of VoxML and dynamic event semantics, we can achieve
a model of an event that is “filled out” with information to an extent far greater
than that provided by a minimal model. The kind of forward composition il-
lustrated thus far can take a minimal model of an event and augment it with
general-domain lexical world knowledge about the event predicate and its par-
ticipants, which allows VoxSim to create a more extensive informational context
than a minimal model provides, which it can then share with its human user.
Visualization, an intuitively accessible modality for most humans, becomes a
medium through which to share that context. From the minimal model, VoxSim’s
interpretation of encoded VoxML and dynamic semantic knowledge allows it to
define the interpretation of the event predicate as a logic program with further
specification than the logic program does in isolation, by drawing on and com-
posing knowledge about the arguments, relations, and preconditions involved in
the event. For example, in the simple utterance “roll the ball,” we as language
interpreters know that there must be a surface to roll the ball over, even though
no such surface is mentioned in the utterance given. The VoxML type encoding
for roll (Fig. 12) makes this explicit, representing the surface as A3.



roll
lex = ...

type =



head = process

args =


a1 = x:agent
a2 = y:physobj
a3 = z:physobj


body = ...





Fig. 12. Abbreviated VoxML type structure for “roll.”
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As mentioned above, in a minimal model, the nature of the surface (shape,
consistency, etc.) can be left out completely. With forward composition and
VoxML, VoxSim fills in some of these parameters by composing the event with
the surface object. Object habitats and configurations therefore become condi-
tioning environments that enforce constraints on the minimal model.

While the integration of context, spatially conditioning environments, and
real-world knowledge may provide sufficient information to determine the nature
of a spatial constraint or set of constraints, the precise instantiated value, down to
the 3D coordinates and rotation of an object at each step of program execution,
may still be left imprecise. For example, through forward composition, VoxSim
may be able to determine the region within which an object must be placed to
satisfy the completion of an event it is commanded to simulate, but the precise
location within that region where the object should be by the end of the event
is both left underspecified and there is no method from the lexical semantics to
determine exactly what value that location should take. Nonetheless, in order for
any platform such as VoxSim to execute the fully specified program at runtime,
all required parameters must have a value assigned, including those that are
potentially never mentioned in the linguistic utterance linked to the event and
never raised in the additional encoding used by forward composition.

For instance, given a cup sitting upright (in the proper orientation), “put the
lid on the cup” clearly describes an end state where the lid closes the cup’s open-
ing. However, if the cup is on its side, we find that, if the end location is chosen
at random, such as by a Monte Carlo method, from possible configurations left
available by the currently operating set of constraints and configurations, both
a lid closing the opening of the cup, and one that is touching the cup on the
positive Y-axis (i.e., explicitly “on top of” the cup independent of orientation)
can be computed as satisfying the command “put the lid on the cup” (Fig. 13).

Fig. 13. Orientation-dependent visualizations of “put the lid on the cup”

Ambiguity of resultant configuration occurs even in default habitats. To say
that something is “on the TV” can usually be interpreted specifically relative
to the type of the object (e.g. using a type system such as Generative Lexicon
[35]), where a physical object on the TV is on top of it while an image is on the
screen, the TV’s semantic head per VoxML.3 However, in the case where the

3 We ignore here the idiomatic non-spatial reading of on TV, denoting “the informa-
tion content available through the medium ‘TV’.”
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object on the TV is something, such as a sheet of paper, that could be placed on
either surface, the ambiguity remains. When VoxSim must make a simulation
assignment of values through random choice, either result may be generated as
the end state of the event (as shown in Fig. 14), and a human is required to
judge the appropriateness of either choice.

Fig. 14. Results from “put the paper on the TV”

Underspecification can thus arise in both post-conditions and in the action
sequence of the event itself, such as when parameters like speed and direction of
motion are left unknown. Additionally, depending on the motion predicate being
simulated, the manner of motion itself may be left underspecified. “Move the cup
to the center of the table” implies a path by the specification of the destination,
but the manner by which the cup should be moved is not specified. Forward
composition may narrow the search space—in this example, the table provides
a surface to be moved over, which may make sliding or rolling (if the cup lacks a
handle) preferable to other forms of motion—but ultimately the predicate itself
contains unspecified parameters and so may be replaced in a simulation with
another motion predicate that satisfies the same basic constraints and imposes
others on top of them. Some examples are given below in Table 1, with move as
the least specified motion predicate.

Program Underspecified parameters

put(y,z) speed of motion

slide(y) speed, direction of translocation

roll(y) speed, direction of rotation

turn(y) speed, direction of rotation
speed, direction of translocation

move(y) manner, speed, direction of motion

Table 1. Sample motion predicates and underspecified parameters

4.2 Experimentation and Early Results

Where a program’s DITL formula says nothing about the nature of a parameter
(e.g., it states that bn+1 is farther from b0 than bn is, but it does not state in
which direction), we can use VoxSim to generate a set of visualizations of that
event with randomly assigned values for the underspecified parameter, and have



14 Multimodal Semantic Simulations of Motion Events

human judges evaluate the results of this Monte Carlo simulation generation to
determine what, if any, “prototypical” values exist for that parameter.

In order to better determine the nature of these values, we designed a series of
experiments in which we asked human judges on the Amazon Mechanical Turk
platform to make similarity judgements between a set of input sentences and
simulations generated from them with randomly chosen values for parameters
requiring value assignment.

1. From one input sentence, we generate three visualizations of the event and
ask the judge to determine which visualization(s) best depict the event de-
scribed by the input sentence. Multiple choices are allowed, and the judge
may respond that none of the provided visualizations adequately depicts the
event described.

2. From a single visualization of an event, we ask the judge to determine which
of three sentences—one of which is the original input and two of which
use different predicates in place of the original one—best describes the event
depicted. Multiple choices are allowed, and the judge may respond that none
of the provided sentences adequately describes the event depicted.

Programs Objects

move x put x on y block grape
turn x put x in y ball banana
roll x lean x on y plate bowl
slide x lean x against y cup knife
spin x flip x on edge disc pencil
lift x flip x at center book paper sheet
stack x close x blackboard
put x near y open x bottle
put x touching y apple

Table 2. Test set of verbal programs and objects

We captured a total of 3357 videos of individual events (3 each for 1119
input sentences generated from combining the objects and events in Table 2).
For each event generated, the underspecified parameters were logged to a SQL
database to facilitate retrieval and evaluation. Videos were uploaded to Amazon
Mechanical Turk to be evaluated by 8 workers for each individual task according
to the guidelines listed above. We received a total of 8952 individual evaluations
on the first task listed (8 evaluations per each of the 1119 input sentences), and
a total of 26,856 individual evaluations on the second task (8 evaluations per
each of 3357 videos). A full analysis of each predicate is currently in progress as
of this writing, but we have completed evaluation on the input classes “put x
near y” and “put x touching y.”

“Touching” was randomly specified as one of the qualitative spatial rela-
tions “left,” “right,” “in front,” “behind,” or “on” with the addition of an RCC
external connection (EC) constraint. Thus the acceptability judgment of the vi-
sualized event may be conditioned on the relation between the two objects at the



Multimodal Semantic Simulations of Motion Events 15

end of the event, or on the motion of the moving object between configurations
relative to the stationary object.

QSR P(accept|QSR)

behind(y) 0.5474
in front(y) 0.5816
left(y) 0.4995
right(y) 0.5560
on(y) 0.6683

Movement (M) P(accept|M) Movement (M) P(accept|M)

behind→behind(y) 0.5347 left→behind(y) 0.5732
behind→in front(y) 0.4758 left→in front(y) 0.5853
behind→left(y) 0.5014 left→left(y) 0.5266
behind→right(y) 0.4888 left→right(y) 0.5211
behind→on(y) 0.7453 left→on(y) 0.6492
in front→behind(y) 0.4523 right→behind(y) 0.5406
in front→in front(y) 0.6447 right→in front(y) 0.5786
in front→left(y) 0.4601 right→left(y) 0.4777
in front→right(y) 0.5756 right→right(y) 0.5847
in front→on(y) 0.6234 right→on(y) 0.7081

Table 3. Results for visualizations of “put x touching y”

We observe a lower likelihood for visualizations to be judged acceptable when
the moving object moves from behind the still object to in front of it, and vice
versa. Visualizations where the moving object ends to the left of the still object
are also less likely to be judged acceptable. This is a weaker correlation than the
dispreference for behind-to-front/front-to-behind motion, but is still noticeable,
falling about 1.16σ below the mean likelihood of acceptance. We also see a strong
preference for the “on” specification of “touching.” Like the apparent inclination
against the left side, this seems to be independent of the moving object’s starting
location relative to the still object. These preferences may be factors of point
of view or frame of reference, conjectures which will be the subject of further
experimentation and evaluation.

Unlike “touching,” specification for “near” must fall in a continuous range
as it is difficult to define discrete relations that can further specify “near.” The
distribution of distances between the two objects at the end of the event was
partitioned using quintiles (the interval from 0 to the first quintile being the least
distance between the objects), which conditioned the acceptability judgement.
QSR relations were also taken into account, but without the EC constraint
implied by “touching.”

Evaluators unsurprisingly preferred visualizations where the two objects ended
up nearer relative to each other. In the first three distance intervals, we observe
a slight preference for events where the moving object ends up behind the still
object. This may be an effect of foreshortening caused by the point of view, as
with some of the “touching” specifications. When conditioning on the joint dis-
tribution of the distance interval and the QSR relation, there is some apparent
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Interval P(accept|QU)

First 0.7523
Second 0.6207
Third 0.3890
Fourth 0.3655
Fifth 0.1295

Interval QSR P(accept|QU,QSR) Interval QSR P(accept|QU,QSR)

First behind(y) 0.7730 Third left(y) 0.3945
First in front(y) 0.7349 Third right(y) 0.3825
First left(y) 0.7338 Fourth behind(y) 0.1713
First right(y) 0.7712 Fourth in front(y) 0.4308
Second behind(y) 0.6701 Fourth left(y) 0.2093
Second in(y) 0.5797 Fourth right(y) 0.4699
Second left(y) 0.6675 Fifth behind(y) 0.0972
Second right(y) 0.5819 Fifth in front(y) 0.1401
Third behind(y) 0.4151 Fifth left(y) 0.1250
Third in front(y) 0.3644 Fifth right(y) 0.1348

Table 4. Results for visualizations of “put x near y”

confusion in judgements of events in the fourth distance interval, where σ for
the population of P(accept|QSR) is greater than .15, where in all other intervals
σ for P(accept|QSR) falls between .019 and .051. This is possibly a factor of
workers being unable to judge purely from the visuals whether an object that
began its movement from a position in the fourth distance interval relative to the
still object, actually ended the motion nearer than it began, whereas in preced-
ing intervals, the resulting location was more likely to be unambiguously “near”
regardless of starting location. These factors may be revealed by conditioning
on starting location or distance.

Evaluation for the remaining predicates is proceeding using similar qualita-
tive and quantitative methods.

4.3 Further Experimentation

While continuing to evaluate results of the above experiments, we are also aug-
menting them with with an automatic evaluation task intended to integrate
VoxML and VoxSim with machine learning approaches.

◦ We are evaluating machine learning methods using the sparse feature vectors
generated during the event capture process, training models to select the
correct sentence originally used to generate the visualization in question
from three candidates provided. As in the human evaluation tasks, it will be
possible for the automatic evaluation to rate multiple sentences as equally
correct, should the probabilities of multiple candidates come out equal in
the model, or to rate none as correct, should no probability come out high
enough. This evaluation is essentially a machine learning-based version of the
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evaluation done by humans in Task #2 discussed above and can be compared
to those same results.

To date, we have established a baseline on this automatic evaluation task
using a maximum entropy logistic regression classifier using generalized iterative
scaling. Over a 10-fold cross-validation of the test set, the MaxEnt classifier
achieves 48.50% accuracy on selecting the correct event predicate alone, and
45.64% when selecting the correct sentence in its entirety.

Predicting Predicate Only Predicting Full Sentence

Total Correct Incorrect

3357 1628 1729

µ Accuracy σ σ2

48.50% 0.29066 0.08448

Total Correct Incorrect

3357 1532 1825

µ Accuracy σ σ2

45.64% 0.02424 0.00059

Table 5. Accuracy tables for baseline automatic evaluation

The baseline results when selecting the predicate alone display a much higher
variance than the results when selecting the entire sentence, pointing to the ex-
istence of some “confusing” features when judging the predicate by itself, or
indicating some extra information provided by object features resulting in more
consistent results across folds. Nevertheless, this baseline exhibits only 12-15%
improvement over random chance in a three-way classification task and we ex-
pect more sophisticated machine learning methods will easily beat this baseline.
We are exploring options available through Google’s Tensor Flow framework,
including the newly-released tf-seq2seq sequence-to-sequence model.

5 Discussion and Future Work

We have presented here a method for incorporating motion and dynamic spatial
semantics into a visualization framework. We have shown the underlying pro-
cessing pipeline from natural language input to minimal model to simulation to
rendering, incorporating encodings of real-world semantic knowledge from DITL
and VoxML to augment the minimal model. Resulting simulations show how
composing knowledge of objects and events allows a computer system, VoxSim,
to create visualizations that accord with human understanding of motion events,
and we have presented some areas where the full level of compositional knowl-
edge provided still leaves some ambiguity that prevents a single simulation from
being generated until underspecified parameters are given values.

Following on this, we have outlined in Section 4.3 a further set of experiments
to determine prototypical or “best” values for some of these commonly-occurring
parameters. Preliminary results are presented above, and a full evaluation is
forthcoming [24].

We are also developing methods for automatically composing complex be-
haviors from primitives, based on DITL, as well as building a corpus of linked
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simulations and event-annotated video in order to train algorithms to discrimi-
nate events based on their participants’ motions [11,12].

Finally, we are planning on building links to lexical semantic resources such as
VerbNet to allow us to leverage existing datasets for macro-program composition,
and to expand the semantic processing to encompass event sequences, allowing
us to generate single-input simulations of narratives beyond the sentence level.

VoxSim provides a method not only for generating 3D visualizations using
an intuitive natural language interface instead of specialized skillsets (a primary
goal of programs such as WordsEye [9]), but also a platform on which researchers
may conduct experiments on the discrete observables of motion events while eval-
uating semantic theories, thus providing data to back up theoretical intuitions.
We believe that visual simulation provides an intuitive way to trace the entail-
ments that inhere in spatial expressions through a narrative, enabling a broader
study of event and motion semantics.

Experiments such as those outlined above may be used by researchers to
gather data on the semantic presuppositions humans hold regarding the proto-
typical realization of motion events, conditioned on variables like objects involved
and point of view. Experiments of this kind can easily be segmented across pop-
ulation groups or across languages with the addition of appropriate vocabulary
and NLP packages. We also believe that the automatic evaluation described can
serve machine learning researchers in determining the salient features of motion
events and object semantics from a computational and deep learning perspec-
tive, offering insight into the differences between human and artificial spatial
cognition. A full description of those results will be forthcoming shortly.
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