Combining Deep Learning and Qualitative Spatial Reasoning to Learn Complex Structures from Sparse Examples with Noise

Nikhil Krishnaswamy, Scott Friedman, and James Pustejovsky

<u>nkrishna@brandeis.edu</u> • <u>friedman@sift.net</u> • <u>jamesp@brandeis.edu</u>

Introduction

- 17 staircases constructed by a naive user in a live multimodal interaction with an avatar
- Noisy, sparse samples
- Variant configurations

• Satisfactory to at least one

• Can an algorithm infer and

reproduce commonalities?

• Blocks are interchangeable

• Stacks get progressively higher

• Direction-independent

• Not isomorphic

person

Data Gathering

"This is a staircase"

Learning Framework

First Move Selection

- MLP samples from training data
- 4x64 dense ReLU layers, RMSProp, sigmoid activation
- Input: 2 randomly chosen blocks; Output: relation

Reference Example Selection

- CNN predicts known sample from
- Input Layer 64 x Conv1D, ReLU 64 x Conv1D, ReLU MaxPooling1D 128 x Conv1D, ReLU 128 x Conv1D, ReLU MaxPooling1D

- Study: Krishnaswamy and Pustejovsky (2018)
- Gesture and language interaction, definition of success up to subject
- Blocks world in 3D opens search space to all 3D variation
- Same label may have enormous search space of relations
- Difficulty using the system:
- Hard to point accurately
- User failure to discover gesture for actions
- Extracted qualitative relations between blocks in structure (RCC8, RCC-3D, TPCC, QSRLib)

Γ	right block7 block1	right,touching block6 block7
	touching block3 block1	right block5 block1
	left block1 block5	under,touching,support block7 block5
	left block1 block7	under,touching,support block1 block3
	under,touching,support block3 block4	touching block5 block7
	touching block6 block5	right block5 block3
	under block1 block4	block7 <359.883; 1.222356; 359.0561>
	touching block4 block3	block1 <0; 0; 0>
	left block3 block5	block6 <0.1283798; 359.5548; 0.9346825>
	left block1 block6	block3 <0; 0; 0>
	left,touching block7 block6	block5 <0; 0; -2.970282E-08>
	right block6 block1	block4 <0; 0; 0>

Example relation set

- current configuration
- Highly inaccurate at start, less later

Next Move Prediction

- LSTM predicts moves to approach example
- 3x32 LSTM, RMSProp, Softmax over *n* timesteps (*n* = # relations defining example)
- Input: closest match of current state; Output: remaining relations

Heuristics and Graph Matching

- Heuristics select best move toward example (from CNN) out of move options (from LSTM)
- Chance, Jaccard Distance, Levenshtein Distance, SPIRE graph matcher, combined (SPIRE + LD)

SPIRE computes state graph of relations that would hold after a move option, score maximal common subgraph (MCS) with the goal state, and chooses best

Results

Evaluators asked to score generates structure by how much (0-10) it resembles a staircase

Heuristic	Avg. Score (μ)	Std. Dev. (σ)	Chance:		× Std. Dev.	
Chance	2.0375	1.0122	ID.		$R^{2} = 0.7514$	
JD	4.3375	2.0387	JD:		× × × ×	

Avg. score vs. std. dev.

structures