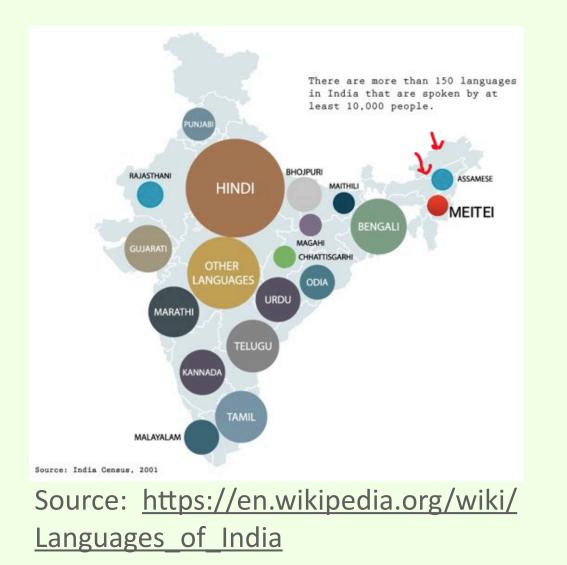
AxomiyaBERTa: A Phonologically-aware Transformer Model for Assamese


Abhijnan Nath, Sheikh Mannan, and Nikhil Krishnaswamy

Colorado State University

• {abhijnan.nath,sheikh.mannan,nkrishna}@colostate.edu

Introduction

- Assamese: an extremely Low-Resource Language (LRL)
- Spoken by 15M people in Northeastern India
 - For comparison, Hindi has >600M speakers
- Less NLP-related resources
- We train AxomiyaBERTa in resource-constrained settings
- Language-specific phonological awareness
- Novel Embedding Disperser architecture
- SOTA results on many NLP tasks
- Phonological attention, strategic optimization work for LRLs!

IndicCorp 32.6 836 1,860 1,220

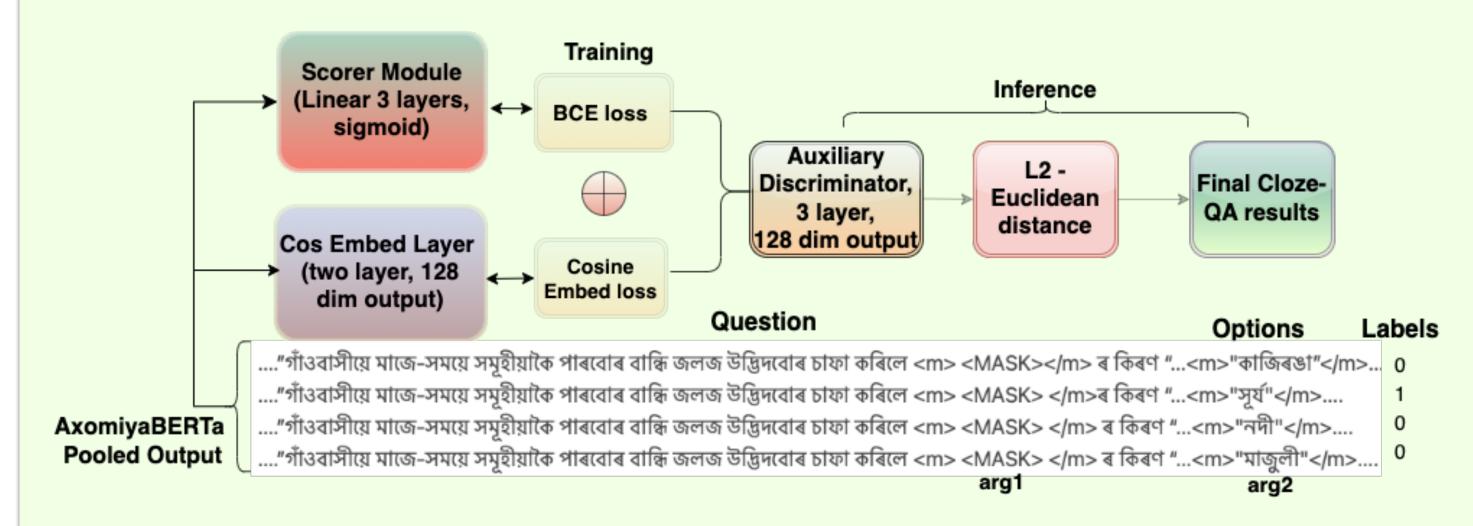
CC-100 and IndicCorp data sizes

Bengali, Hindi, and English.

(millions of tokens) for Assamese,

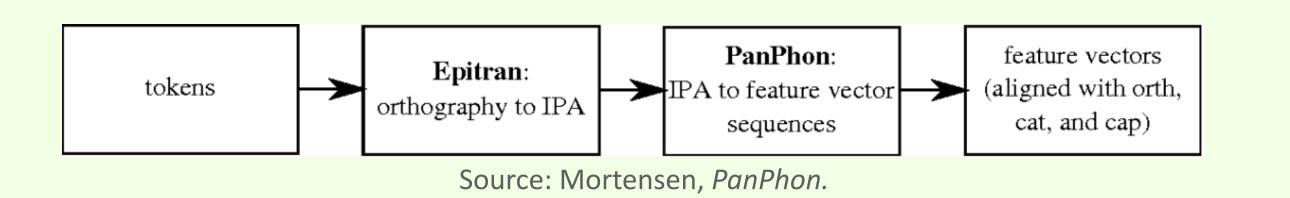
Pretraining Corpora

- Train on four publicly-available Assamese (As) datasets:
- Assamese Wikidumps Dataset
- OSCAR Dataset
- PMIndia Dataset
- CC-100 Assamese corpus
- ECB+ Corpus (translated to Assamese)


NLP Tasks

- Cloze-Style Question Answering (Long Context)
- Wiki-Section Title Prediction (Long Context)
- Named Entity Recognition (Short Context)
- CDCR: Cross Document Coreference Resolution

Features	Train	Dev	Test	Pad-Len
Cloze-QA	8,000	2,000	1,768	360
Wiki-Titles	5,000	625	626	1,848
AsNER	21,458	767	1,798	744
WikiNER	1,022	157	160	480
T-ECB+	3,808	1,245	1,780	552


Embedding Disperser Architecture

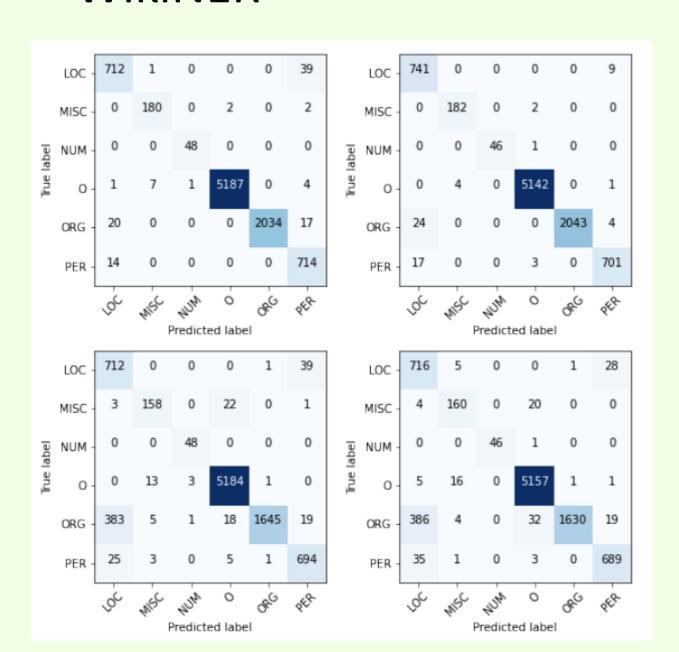
- Combined loss objective to tackle anisotropy
- Cosine Embedding Loss + BCE Loss
- Helps disperse the latent space in smaller language models

Phonological Feature Generation

- Epitran and PanPhon to generate phonological features
- NER tokens for short-context, candidate options for Cloze-QA and Wiki-Titles, and event lemma for CDCR

Results

Models	Cloze-QA	Wiki-Titles	AsNER (F1)	WikiNER (F1)
XLM-R	27.11	56.96	69.42	66.67
MBERT	29.42	73.42	68.02*	92.31
IndicBERT-BASE	40.49	65.82	68.37*	41.67
MuRIL	-	-	80.69	-
AxomiyaBERTa	46.66	26.19	81.50	72.78
AxomiyaBERTa + Phon	47.40	59.26	86.90	81.71


Test F1 Scores/Accuracy for AxomiyaBERTa and Phonologically-aware AxomiyaBERTa on the evaluation tasks compared to previous and our finetuned baselines.

CDCR Models		BCUB		MUC		CEAF-e		BLANC		C-F1			
	P	R	F1	P	R	F1	P	R	F1	P	R	F1	
Lemma Baseline	75.81	60.24	67.14	64.59	54.25	58.97	61.36	73.25	66.78	74.97	60.40	64.66	64.29
XLM-100 [†]	5.31	97.55	10.08	54.17	97.84	69.73	30.99	-0.73	1.42	49.78	50.00	49.89	27.07
IndicBERT-BASE	74.48	51.93	61.19	44.03	21.94	29.29	40.80	65.59	50.31	52.09	55.41	52.93	46.93
MuRIL	93.53	48.33	63.73	68.18	9.23	16.26	41.56	85.09	55.85	54.78	53.31	53.91	45.28
AxomiyaBERTa	34.68	85.98	49.42	62.40	80.51	70.30	67.63	43.85	53.20	53.00	87.75	54.23	57.64
AxomiyaBERTa + Phon	70.00	64.58	67.18	64.11	44.71	52.68	50.18	68.57	50.18	56.22	68.65	59.19	59.27

Event coreference results of AxomiyaBERTa on Assamese (translated) ECB+ test set compared with other Transformer-based LMs and the lemma-based heuristic.

Analysis

- AxomiyaBERTa achieves SOTA on Named Entity Recognition and Cloze-style QA
- Phonological signals boost native AxomiyaBERTa performance
 - 2x boost in Wiki-Titles, +~10 F1 points on WikiNER
 - Help disambiguate misclassifications in AsNER and WikiNER

Top: Confusion matrices showing AxomiyaBERTa performance on AsNER without [L] and with [R] phonological awareness. Bottom: IndicBERT [L] and MBERT [R] performance on AsNER.

Mod	dels	TP	L1	L2	Diff-Rate
XLM-	100	6,361	1,441	4,920	.773
IndicBE	RT	101	46	55	.545
Mul	RIL	62	21	41	.661
A	λxΒ	1,833	466	1,367	.746 (.98)
AxB + P	hon	956	81	875	.915 (.93)

Distribution of same (L1) and different (L2) event lemma samples in the true positive (TP) distribution of the T-ECB+ test set. "Diff-Rate" is the percentage of different lemma samples within TPs (= L2/TP).

	P+N-	P-N+	P+N+	P-N-	
Cos-sim	.98844	.98829	.98824	.98838	

Average cosine similarities between within-set samples on the Wiki-Titles test set for native (N) and phonological (P) AxomiyaBERTa. "+" and "-" represent correct and incorrect samples respectively.

Conclusion and Future Work

- A novel phonologically-aware Transformer Language Model for Assamese, an extremely low-resource Indian language
- Strategic use of Embedding Disperser for a more expressive latent space (task-specific)
- Achieved SOTA on short-context task like AsNER and longer context tasks like Cloze-QA
- Novel baselines for challenging tasks like CDCR on Assamese
- Overall, we show that optimizing the Embedding Space, and phonological information flow can overcome limited data or limited compute power in low-resource settings

Resources

Pretrained model Codebase