
Conclusion & Future Directions 
We have argued and presented evidence that 
underspecified parameters associated with motion events 
can serve as reliable indicators of a particular event class. 
We have also presented a framework for action learning 
that relies on abstracting away those motion parameter 
values that may vary across individual instances and 
performances of events. These two avenues naturally 
combine to create a pipeline for action recognition by a 
computational agent using information from visual and 
linguistic modalities (cf. (Yang et al., 2014; Yang et al., 
2015), and for using action performance and gestural 
representations of actions as a learnable communicative 
modality between humans and computers.
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Learning Complex Events 
Even a simple event such as put(x, near(y)) requires a 
series of translations that can be difficult for a computer to 
distinguish from other types of motions involving changing 
relations between two objects.  For this is a sequential 
learning problem, we turn to LSTM (Hochreiter and 
Schmidhuber, 1997) to learn the sequence of primitive 
events that comprise a complex event. If the sequence can 
be effectively learned, it should be able to be reproduced 
by a virtual embodied agent, whose objective is to produce 
a sequence of actions that resembles movement of objects 
in the training data. 

In the tool ECAT (Do et al., 2016), we replicate the virtual 
scenes generated with VoxSim, but with the presence of a 
real agent to manipulate the objects (blocks only). Video is 
captured and object tracked with Microsoft Kinect depth-
sensing cameras, and three-dimensional coordinates of 
performer joints are also captured and annotated. 

Captured object positions are then flattened to two 
dimensions in order to normalize any jitter in the capture 
and allow for easier evaluation of object relations relative 
to the table surface. 

 

A sequence of feature vectors, S, which represent the 
qualitative spatial relations between the objects in the 
action captures, is fed to an LSTM network along with a 
frame number and an event. The network output f(S, i, e) 
= 0 ≤ qi ≤ 1 estimates the progress of e at frame i.  

The virtual agent’s objective is then to manipulate the 
objects in sequence, for a increasing reward as the 
generated sequence more closely approximates the 
movement of objects in the training data. We use the 
REINFORCE algorithm with a Gaussian distribution policy 
πθ(u|x) = Gaussian(µ, σ), where dim(µ) is the degree of 
freedom in position (2 dimensions) and dim(σ) is the degree 
of freedom in orientation (1 dimension). 

Planning is parameterized by θ : uk ∼ πθ(uk|xk), where uk 
is motion performed at step k and xk is current set of 
relations between objects.  After each atomic object 
manipulation uk we use the LSTM network to estimate how 
fully uk completes the event in question, then calculate 
the immediate reward as f(S, k, e) - f(S, k-1, e).  

The result is a sequence that can be executed by a virtual 
agent within the VoxSim environment. 

Learning Actions from Events Using Agent Motions

Extracting Actions from Events 

Where captured instances contain multiple object configu- 
rations or permutations under the same label (for example, 
building rows of varying numbers of blocks or putting two 
objects near each other in various orientations), the LSTM 
learns event progress by changes in object relations, such 
as the number and relative orientation of EC or “touch- 
ing” relations between objects in a row. This allows the 
REINFORCE algorithm to generalize a concept (e.g., row) to 
set of common relations across all captured or simulated 
instances without a set number of blocks. This makes the 
parameters that vary across the captured instances under- 
specified.  

As we have shown that underspecified motion features ap- 
pear to be strong signals of event class for objects moving 
in isolation, we expect the same principle holds for objects 
be- ing manipulated by an agent, especially as one of the 
goals of our reinforcement learning pipeline is to abstract 
away those parameters whose values vary across the 
performed or simulated example actions.  

For instance, let us return to the semantics of “slide” pre- 
sented in Figure 1. One of the requirements is that at all 
times the moving object is kept EC (externally connected) 
with the supporting surface. Since in a 3D environment, all 
motions eventually break down into a series of trans- 
lations and rotations, all relations between objects can be 
represented as relative offsets and orientations, as in the 
reinforcement learning trials. Thus, if “sliding” motions of 
various speeds and moving in various directions all re- turn 
roughly equal rewards as long as the object remains 
attached to the supporting surface (as the LSTM should 
produce high values of event progress for all these mo- 
tions given enough performed examples), the REINFORCE 
algorithm should be able to generate an event sequence 
wherein many values for these parameters can be sampled 
from the Gaussian distribution, and the action, when per- 
formed by an agent with those values, should satisfy an ob- 
server’s judgment given the “slide” label. Thus the high 
variance of motion speed and motion direction comport

 with those parameters’ status as strong signals of the “slide” 
event class.  

Since in the 3D simulated world with the agent, objects are 
manipulated by attaching them to the agent’s “graspers” or 
hands, so that the motion of the hand controls the motion of a 
grasped object, it is the motion of the hand that dictates what 
class of action is being undertaken. Thus in the above example, 
if the hand motion may take a wide variety of val- ues of speed 
and direction but always maintains a constant or near-constant 
vertical offset with the surface (represent- ing the height of the 
object being moved), then this motion may be interpreted as 
representing a “slide,” regardless of whether or not any actual 
object is being moved. If no ob- ject is moved along with the 
hand, this “action model” becomes a “mime” or gestural 
representation of the action in question.  

Overview 
Work in event visualization from natural language (Coyne 
and Sproat, 2001; Siskind, 2001; Chang et al., 2015) often 
struggles with underspecified parameters in events. These 
parameters may be inherent to the event itself (e.g., 
speed, direction, etc.), or properties of the object 
argument(s) (e.g., axis of rotation, geometrical concavity, 
etc.). Should a computational visualization system use an 
inappropriate value for one of these parameters, it may 
generate a visualization for a given event that does not 
comport with a human viewer’s understanding of what that 
event is. 

Event recognition provides a venue to explore “learning 
from observation,” and as a domain has achieved recent 
relevance in human communication with robotic agents 
(Yang et al., 2015b; Paul et al., 2017). Learning can 
abstract away the parameters that vary across instances of 
the same motion class, making those parameters 
underspecified as well, as in the aforementioned 
visualization problem. For an embodied agent to interact 
with objects, the agent must use its hands, and the hand 
motions effect forces upon the object. Thus, we expect 
that the same parameter abstraction approach can be used 
for the agent’s hand motions, creating a path toward action 
recognition from hand gestures only.  

Causal events are composed of an object model, which 
captures the change an object is undergoing over time, and 
an action model, which characterizes the activity that 
inheres in the causing agent (Pustejovsky and 
Krishnaswamy, 2016). We present results from an event 
visualization system using multimodal simulations and 
methodology from an event learning and composition 
system to introduce a framework for learning action 
recognition from the movements of the agent rather than 
the object. We expect such a framework may be useful for 
recognizing and evaluating the actions denoted by agent 
motions enacted without attached objects, e.g., by 
gestures. 

Event Classification 
Using the VoxSim simulation environment (Krishnaswamy 
and Pustejovsky, 2016; Krishnaswamy, 2017), we generated 
three visualizations for input sentences of the imperative 
form VERB x (or VERB x RELATION y). Amazon Mechanical 
Turk workers were shown a single animated movie of an 
event and asked them to select, out of three heuristically-
generated captions (one of which was the original input 
sentence, the best one.  

Sample VoxSim capture for “move the block” 

Values assigned to the verb’s underspecified features 
during visualization were saved in feature vectors used to 
train classifiers to select the verb of the input sentence 
that produced that vector (ML analogue to the MTurk task 
for a restricted set of 3 verbs or an unrestricted set of 
16).  We trained a baseline MaxEnt and 8 variants of a 
multi-layer perceptron on this task: 

All neural network variant exceeded 90% accuracy for verb 
selection given underspecified features 

The best performing network was trained on only the 
presence or absence of a given feature, independent of 
value, showing that the mere existence of a feature is a 
strong predictor of motion class. 

VoxML semantics for [[SLIDE]].  The absence of speed and 
direction parameters in E2 indicates underspecification.
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