
Conclusion & Future Directions
We have argued and presented evidence that
underspecified parameters associated with motion events
can serve as reliable indicators of a particular event class.
We have also presented a framework for action learning
that relies on abstracting away those motion parameter
values that may vary across individual instances and
performances of events. These two avenues naturally
combine to create a pipeline for action recognition by a
computational agent using information from visual and
linguistic modalities (cf. (Yang et al., 2014; Yang et al.,
2015), and for using action performance and gestural
representations of actions as a learnable communicative
modality between humans and computers.

Nikhil Krishnaswamy, Tuan Do, and James Pustejovsky

Learning Complex Events
Even a simple event such as put(x, near(y)) requires a
series of translations that can be difficult for a computer to
distinguish from other types of motions involving changing
relations between two objects. For this is a sequential
learning problem, we turn to LSTM (Hochreiter and
Schmidhuber, 1997) to learn the sequence of primitive
events that comprise a complex event. If the sequence can
be effectively learned, it should be able to be reproduced
by a virtual embodied agent, whose objective is to produce
a sequence of actions that resembles movement of objects
in the training data.

In the tool ECAT (Do et al., 2016), we replicate the virtual
scenes generated with VoxSim, but with the presence of a
real agent to manipulate the objects (blocks only). Video is
captured and object tracked with Microsoft Kinect depth-
sensing cameras, and three-dimensional coordinates of
performer joints are also captured and annotated.

Captured object positions are then flattened to two
dimensions in order to normalize any jitter in the capture
and allow for easier evaluation of object relations relative
to the table surface.

A sequence of feature vectors, S, which represent the
qualitative spatial relations between the objects in the
action captures, is fed to an LSTM network along with a
frame number and an event. The network output f(S, i, e)
= 0 ≤ qi ≤ 1 estimates the progress of e at frame i.

The virtual agent’s objective is then to manipulate the
objects in sequence, for a increasing reward as the
generated sequence more closely approximates the
movement of objects in the training data. We use the
REINFORCE algorithm with a Gaussian distribution policy
πθ(u|x) = Gaussian(µ, σ), where dim(µ) is the degree of
freedom in position (2 dimensions) and dim(σ) is the degree
of freedom in orientation (1 dimension).

Planning is parameterized by θ : uk ∼ πθ(uk|xk), where uk
is motion performed at step k and xk is current set of
relations between objects. After each atomic object
manipulation uk we use the LSTM network to estimate how
fully uk completes the event in question, then calculate
the immediate reward as f(S, k, e) - f(S, k-1, e).

The result is a sequence that can be executed by a virtual
agent within the VoxSim environment.

Learning Actions from Events Using Agent Motions

Extracting Actions from Events

Where captured instances contain multiple object configu-
rations or permutations under the same label (for example,
building rows of varying numbers of blocks or putting two
objects near each other in various orientations), the LSTM
learns event progress by changes in object relations, such
as the number and relative orientation of EC or “touch-
ing” relations between objects in a row. This allows the
REINFORCE algorithm to generalize a concept (e.g., row) to
set of common relations across all captured or simulated
instances without a set number of blocks. This makes the
parameters that vary across the captured instances under-
specified.

As we have shown that underspecified motion features ap-
pear to be strong signals of event class for objects moving
in isolation, we expect the same principle holds for objects
be- ing manipulated by an agent, especially as one of the
goals of our reinforcement learning pipeline is to abstract
away those parameters whose values vary across the
performed or simulated example actions.

For instance, let us return to the semantics of “slide” pre-
sented in Figure 1. One of the requirements is that at all
times the moving object is kept EC (externally connected)
with the supporting surface. Since in a 3D environment, all
motions eventually break down into a series of trans-
lations and rotations, all relations between objects can be
represented as relative offsets and orientations, as in the
reinforcement learning trials. Thus, if “sliding” motions of
various speeds and moving in various directions all re- turn
roughly equal rewards as long as the object remains
attached to the supporting surface (as the LSTM should
produce high values of event progress for all these mo-
tions given enough performed examples), the REINFORCE
algorithm should be able to generate an event sequence
wherein many values for these parameters can be sampled
from the Gaussian distribution, and the action, when per-
formed by an agent with those values, should satisfy an ob-
server’s judgment given the “slide” label. Thus the high
variance of motion speed and motion direction comport

 with those parameters’ status as strong signals of the “slide”
event class.

Since in the 3D simulated world with the agent, objects are
manipulated by attaching them to the agent’s “graspers” or
hands, so that the motion of the hand controls the motion of a
grasped object, it is the motion of the hand that dictates what
class of action is being undertaken. Thus in the above example,
if the hand motion may take a wide variety of val- ues of speed
and direction but always maintains a constant or near-constant
vertical offset with the surface (represent- ing the height of the
object being moved), then this motion may be interpreted as
representing a “slide,” regardless of whether or not any actual
object is being moved. If no ob- ject is moved along with the
hand, this “action model” becomes a “mime” or gestural
representation of the action in question.

Overview
Work in event visualization from natural language (Coyne
and Sproat, 2001; Siskind, 2001; Chang et al., 2015) often
struggles with underspecified parameters in events. These
parameters may be inherent to the event itself (e.g.,
speed, direction, etc.), or properties of the object
argument(s) (e.g., axis of rotation, geometrical concavity,
etc.). Should a computational visualization system use an
inappropriate value for one of these parameters, it may
generate a visualization for a given event that does not
comport with a human viewer’s understanding of what that
event is.

Event recognition provides a venue to explore “learning
from observation,” and as a domain has achieved recent
relevance in human communication with robotic agents
(Yang et al., 2015b; Paul et al., 2017). Learning can
abstract away the parameters that vary across instances of
the same motion class, making those parameters
underspecified as well, as in the aforementioned
visualization problem. For an embodied agent to interact
with objects, the agent must use its hands, and the hand
motions effect forces upon the object. Thus, we expect
that the same parameter abstraction approach can be used
for the agent’s hand motions, creating a path toward action
recognition from hand gestures only.

Causal events are composed of an object model, which
captures the change an object is undergoing over time, and
an action model, which characterizes the activity that
inheres in the causing agent (Pustejovsky and
Krishnaswamy, 2016). We present results from an event
visualization system using multimodal simulations and
methodology from an event learning and composition
system to introduce a framework for learning action
recognition from the movements of the agent rather than
the object. We expect such a framework may be useful for
recognizing and evaluating the actions denoted by agent
motions enacted without attached objects, e.g., by
gestures.

Event Classification
Using the VoxSim simulation environment (Krishnaswamy
and Pustejovsky, 2016; Krishnaswamy, 2017), we generated
three visualizations for input sentences of the imperative
form VERB x (or VERB x RELATION y). Amazon Mechanical
Turk workers were shown a single animated movie of an
event and asked them to select, out of three heuristically-
generated captions (one of which was the original input
sentence, the best one.

Sample VoxSim capture for “move the block”

Values assigned to the verb’s underspecified features
during visualization were saved in feature vectors used to
train classifiers to select the verb of the input sentence
that produced that vector (ML analogue to the MTurk task
for a restricted set of 3 verbs or an unrestricted set of
16). We trained a baseline MaxEnt and 8 variants of a
multi-layer perceptron on this task:

All neural network variant exceeded 90% accuracy for verb
selection given underspecified features

The best performing network was trained on only the
presence or absence of a given feature, independent of
value, showing that the mere existence of a feature is a
strong predictor of motion class.

VoxML semantics for [[SLIDE]]. The absence of speed and
direction parameters in E2 indicates underspecification.

Selected References
Chang, A., Monroe, W., Savva, M., Potts, C., and Manning, C. D. (2015). Text
to 3D scene generation with rich lexical grounding.

Coyne, B. and Sproat, R. (2001). WordsEye: an automatic text-to-scene
conversion system.

Do, T., Krishnaswamy, N., and Pustejovsky, J. (2016). ECAT: Event capture
annotation tool.

Do, T., Krishnaswamy, N., and Pustejovsky, J. (2018). Teaching virtual agents
to perform complex spatial-temporal activities.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.

Krishnaswamy, N. and Pustejovsky, J. (2016). VoxSim: A visual platform for
modeling motion language.

Krishnaswamy, N. (2017). Monte-Carlo Simulation Generation Through
Operationalization of Spatial Primitives.

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with
policy gradients.

Randell, D., Cui, Z., Cohn, A., Nebel, B., Rich, C., and Swartout, W. (1992). A
spatial logic based on regions and connection.

Siskind, J. M. (2001). Grounding the lexical semantics of verbs in visual
perception using force dynamics and event logic.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning.

Yang, Y., Guha, A., Fermuller, C., and Aloimonos, Y. (2014). A cognitive
system for understanding human manipulation actions.

Yang, Y., Aloimonos, Y., Fermuller, C., and Aksoy, E. E. (2015). Learning the
semantics of manipulation action.

nkrishna@brandeis.edu • tuandn@brandeis.edu • jamesp@brandeis.edu

mailto:nkrishna@brandeis.edu
mailto:tuandn@brandeis.edu
mailto:jamesp@brandeis.edu

