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Ongoing Experiments

Introduction

e Embodied multimodal agents (avatars) model encounters
between two "people,” with environmental awareness

e Provide additional structure that can move NLP systems
closer to genuine understanding of grounded language

e Where large language models and computer vision
systems are difficult to probe, embodied agents have
multiple avenues to demonstrate their understanding

e If one modality is insufficiently communicative, then
another may supplement it

e "Understanding"~ retrieval of communicative intent from
an utterance (Bender and Koller, 2020)

e We present ongoing experiments in multimodal agents
exhibiting environmentally-grounded understanding

Diana System

e A co-perceptive, co-attentive agent

e A communicative act C; = <Speech, Gesture, Facial

expression, gaZe, and Action> e Building a web-deployed version of Diana to study how
e e.g., C, =<S="left", G = [Pointg » Dir = RIGHT]> - say people mix modalities in REs
"left"” and point to the right; this signals a's frame of e Purposely coarse mouse deixis + automated speech
reference recognition
e Diana's semantic knowledge of objects and actions is based e Assessed quality of Google ASR with 20+ college
on VoxML (Pustejovsky and Krishnaswamy, 2016) students reading 5 pre-defined scripts
e Interprets language and gestures to collaborate on object e Assessed open vocabulary and syntactically-adaptive
movement tasks with humans domain vocabulary recognition
e Demonstrates understanding: if the human refers to "the Open yp——"
purple block," Diana directs her attention there Vocabulary Vocabulary

. oo, o . o)
e Diana's capabilities are not fully symmetric: the human may Accuracy 81.882% 84.345%
. , 18.002% 15.519%
talk a lot, but Diana doesn't say much Std. Dev. (WER] 02033 0 19087
e To increase "deep understanding" for both Diana and the
hufma.n, we are c?nduchng experiments on multimodal e Log target object, HUMAN: Thke tha puple block. [l 01w
. . ana
FETEITIng exXpressions coordinates, distance i This one? fpins o e et
. . HUMAN: No. [“thumbs down” gesture]
to agent, relations in DIANA: How about thislone? [peints fo the otfer
. purple block]
scene, modality used, HUMAN: Yes. Put it on the green block you
. . just moved. [points to a red block that DIANA
attributes of objects, recently put dow] |
] DIANA: Do you mean the red block I just put
relations between down?
s - . . HUMAN: [“thumbs up” gesture]
— objects, previously- M——— ——

referenced objects

e Deploy on Prolific in 3 months: 250 workers, 10 scenes,
10 distinct target objects
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