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Introduction 
• Embodied mulWmodal agents (avatars) model encounters 

between two "people," with environmental awareness 
• Provide addiWonal structure that can move NLP systems 

closer to genuine understanding of grounded language 
• Where large language models and computer vision 

systems are difficult to probe, embodied agents have 
mulWple avenues to demonstrate their understanding 

• If one modality is insufficiently communicaWve, then 
another may supplement it 

• "Understanding"∼ retrieval of communicaWve intent from 
an uXerance (Bender and Koller, 2020) 

• We present ongoing experiments in mulWmodal agents 
exhibiWng environmentally-grounded understanding

Selected Related Work 

Diana System 
• A co-percepWve, co-aXenWve agent 
• A communicaWve act Ca = <Speech, Gesture, Facial 

expression, gaZe, and AcWon> 
• e.g., Ca = <S = "lej", G = [Pointg ^ Dir = RIGHT]> - say 

"lej" and point to the right; this signals a's frame of 
reference 

• Diana's semanWc knowledge of objects and acWons is based 
on VoxML (Pustejovsky and Krishnaswamy, 2016) 

• Interprets language and gestures to collaborate on object 
movement tasks with humans 

• Demonstrates understanding: if the human refers to "the 
purple block," Diana directs her aXenWon there 

• Diana's capabiliWes are not fully symmetric: the human may 
talk a lot, but Diana doesn't say much 

• To increase "deep understanding" for both Diana and the 
human, we are conducWng experiments on mulWmodal 
referring expressions

Ongoing Experiments 

Proposed 
Models

• Building a web-deployed version of Diana to study how 
people mix modaliWes in REs 

• Purposely coarse mouse deixis + automated speech 
recogniWon 

• Assessed quality of Google ASR with 20+ college 
students reading 5 pre-defined scripts 
• Assessed open vocabulary and syntacWcally-adapWve 

domain vocabulary recogniWon 

• Log target object, 
coordinates, distance 
to agent, relaWons in 
scene, modality used, 
aXributes of objects, 
relaWons between 
objects, previously-
referenced objects 

• Deploy on Prolific in 3 months: 250 workers, 10 scenes, 
10 disWnct target objects

Outputs 
< Modality,     M ∈ [Gesture, Language, Ensemble] 
 UXerance,     U: decoded sentence embedding 
 LocaWon,     L: locaWon gesture grounds to 
 DemonstraWves >  D ∈ [this, that] 

Based on LSTMs 
A-LSTM: takes target object as query, outputs descriptor tuple where M = L ∨ E 
and aXribute ∈ U 
R-LSTM: takes pairwise relaWons between target object and others, outputs 
relaWonal descriptors saWsfied by target 
H-LSTM: takes past states, output acWons previously taken with target

Open 
Vocabulary

Restricted 
Vocabulary

Accuracy 81.882% 84.345%
WER 18.002% 15.519%
Std. Dev. (WER) 0.20332 0.19087
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