
Conclusion & Future Directions 
We have proposed an evaluation scheme to assess the 
coverage of multimodal interaction systems and outlined 
its use evaluating a sample interaction in a system that 
uses linguistic, gestural, and visual modalities. The 
example system exploits many advantages of virtual 
embodiment (Kiela et al., 2016); consistent evaluation is 
required to discover where the system needs improvement.  
Our framework can provide this information without very 
complicated algorithms to process the logged data. 

We have presented preliminary results from naive users run 
through the sample system, which show how we can use 
simple metrics to assess the ease or difficulty with which 
specific features communicate information. We believe this 
type of evaluation will be useful for developing user models 
and helping researchers assess the gaps in novel 
computational interaction systems in a variety of 
modalities, scenarios, and interaction types. 

Example Results 
Response times are charted against the semantic features of the moves that prompted the relevant response.   
Comparable moves occur in similar semantic contexts: [mj−n..mj+n] where mj = the move, examined in a 
window of size 2n + 1.  P(ti|mj−n..mj..mj+n) ∝ the probability that response time t falls in interval i given a 
move/surrounding context.  

• Avatar takes more time to recognize spoken “yes” than “no” (human may take longer to communicate a 
spoken positive acknowledgment than a negative one) 

• [[PUSH]] is almost 2x as likely as [[CARRY]] to prompt a “very quick” (first interval) response (may be easier 
to produce gesture with fingers straight than curved) 

• Avatar is quicker to recognize right-handed pointing than left-handed (gesture recognition may have greater 
variance in detecting left-hand pointing, due to bias in training dataset)
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Hallmarks of Communication 

A “meaningful” interaction with a computer system should 
model certain aspects of a similar interaction between two 
humans. Namely, each interlocutor should have something 
“interesting” to say, and the interaction enables them to 
work together to achieve common goals and build off each 
other’s contributions. We therefore build the evaluation 
scheme off of the following qualitative metrics:  

 1. Interaction has mechanisms to move the conversation 
forward (Asher and Gillies, 2003; Johnston, 2009)  

 2. System makes appropriate use of multiple modalities 
(Arbib and Rizzolatti, 1996; Arbib, 2008)  

 3. Each interlocutor can steer the course of the interac- 
tion (Hobbs and Evans, 1980)  

 4. Both parties can clearly reference items in the in- 
teraction based on their respective frames of refer- 
ence (Ligozat, 1993; Zimmermann and Freksa, 1996; 
Wooldridge and Lomuscio, 1999)  

 5. Both parties can demonstrate knowledge of the 
changing situation (Ziemke and Sharkey, 2001)  

We use distinct semantic properties of specific elements in 
the interaction to determine what about the interaction 
enabled or hindered this subjective “shared 
understanding.” 

Multimodal Semantics 
In the context of shared physical tasks in a common 
workspace, shared perception creates the context for the 
conversation between interlocutors (Lascarides and Stone, 
2006; Lascarides and Stone, 2009; Clair et al., 2010; 
Matuszek et al., 2014); it is this shared space that gives 
many gestures, such as pointing, their meaning: 

• Engage: Begins and ends the task  
• Positive acknowledge: Signals agreement or affirmative 

response to a question 
• Negative acknowledge: Signals disagreement or 

negative response to a question 
• Point: Indicates a region or block(s) in that region.  
• Grab: Tells the avatar to grasp an indicated block. 
• Carry: Pick up, move, or put down. 
• Push: Signals the avatar to push a block in indicated 

direction 

Sample VoxML gesture semantics: [[PUSH]] vs. [[CARRY]] 

Effective multimodal systems should support multimodal 
commands and shared perception, and approximate peer-
to-peer conversations. A semantically-informed evaluation 
scheme, which is intended to be situation- agnostic and 
relies solely on logging the time and nature of interactions 
between interlocutors, conditioning on semantic elements 
during post-processing should scale to domain-agnostic 
interactions. 

An Evaluation Framework for Multimodal Interaction

Data Collection 

Example abbreviated log 

As proxy for the human’s understanding of an avatar move, 
we take the time elapsed between the first in a block of 
avatar moves uninterrupted by a human move, and the 
human response that follows. Time differences (i.e, 
human’s time to begin response) should reflect the clarity 
or expressiveness of the avatar’s move. 

The human may make gestures the avatar cannot recognize 
or interpret, so the human makes multiple moves before 
the avatar responds. We call this the avatar’s time to 
recognize content.

Overview 
As natural language systems become integrated with 
everyday use, users will come to expect their interactions 
to approximate communication with another human, 
multimodally. With increased interest in multimodal 
interaction comes a need to evaluate the performance of a 
multimodal system on all levels with which it engages the 
user. Evaluation should be modality-agnostic and assess the 
success of communication between human and computer, 
within the shared context created by the human-computer 
interaction.  

VoxML (Pustejovsky and Krishnaswamy, 2016) serves as the 
platform for modeling objects, events, and actions, and 
and the VoxML-based simulation environment VoxSim 
(Krishnaswamy and Pustejovsky, 2016a, 2016b) implements 
a multimodal interaction involving natural language and 
gesture. This allows us to exercise VoxML object and event 
semantics to assess conditions on the success or failure of 
the interaction. 

Human-Avatar-Blocks World (HAB) 
A human and an avatar in the VoxSim environment must 
collaborate to complete a simple construction task using 
virtual blocks that are manipulated by the avatar. 

Example interaction setup showing human (top left) and 
avatar 

• The human must instruct the avatar to reach the goal 
configuration using a combination of DCNN-recognized 
gestures and natural language instructions 

• The avatar communicates through gestures and natural 
language output to request clarification of ambiguous 
instructions or present its interpretation of the human’s 
commands 

• The human may indicate (point to) blocks and instruct 
the avatar to slide and move them relative to other 
blocks or relative to regions of the virtual table 

• The human must also respond to the avatar’s questions, 
when the avatar perceives an ambiguity in the human’s 
instructions.
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Experimental Setup 
• 20 subjects (CS grad students) 
• No prior knowledge of avatar’s vocabulary 
• Told computer could understand language and gesture 
• Asked to build 3-stepped staircase with 6 blocks 
• Definition of “success” left up to subject 
• Logged interpretable gestures made by human, 

interpretable words spoken by human, gesture made 
by avatar, action taken by avatar, utterance spoken by 
avatar
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