Where am | and where should | go? Grounding positional and

directional labels in a disoriented human balancing task
Sheikh Mannan and Nikhil Krishnaswamy

(Dis)embodiment Conference, September 15-16, 2022, Gothenburg, Sweden

Colorado State University



Outline

. Introduction

. MARS balancing task
. Data

. Model architecture

. Evaluation

. Results

. Discussion

. Conclusions and future work

GE@ Colorado State University



Introduction

. Meteoric rise of large language models (LLMs) facilitate coherent, grammatical text generation using high-dimensional
representations of language

. LLMs still fail at understanding the current situational context that comes from non-textual (or non-visual) context

. Consider human spatial disorientation, where even expert humans subject to gravitational transitions where gravitational
cues sensed by the vestibular system are absent, lead to fatal accidents (Shelhamer, 2015; Cowings et al., 2018)

. Numerical Al models with access to quantitative information about position and movement can potentially determine when
humans may lose control and intervene by telling humans what to do

. Can embeddings from such numerical models grounded with BERT (Devlin et al., 2019) embeddings representing thought
vectors for position embody a spaceflight-analog balancing task and act as a countermeasure for spatial disorientation?
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. MARS data from Vimal et al. (2020) Time {s)

— 34 participants with performing 40 trials over 2 days, each trial 100 seconds long
—  primary data points collected: angular position, angular velocity & joystick deflections
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. Proficiency labels from Vimal et al. (2020)

—  participants clustered based on their balancing performance using various engineered features, such as Crash
frequency, Destabilizing joystick deflections, etc.

—  Proficient (or “Good”), Somewhat Proficient (or “Medium”), and Not Proficient (or “Bad”)
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. Positional and Direction labels (our addition)
—  for grounding the situated numerical features from the MARS to a linguistic representation
—  representations would be possible answers to the questions “where am I?” and “where should | go?”

—  for position relative to the DOB a human may think “I have drifted more towards the right”; generated by third-party
annotators for each of the three regions left, right, and center

—  for direction, the human would have 3 choices to deflect the joystick left, right, or center
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Model Architecture: Data Preprocessing

. Fixed sliding window technique to extract segments of joystick . :
deflections, angular velocity and positions 0 o

. User in control and no crashes occurred while looking ahead vy F 20 : 00
seconds in the future g ° § _02§

. For each viable window, random sentence annotation assigned for 2 ’2°§ %
region corresponding to the user’s average position in the window, il
e.g., “l think | am somewhere in the center” or “| have drifted more e
towards the right.”
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Model Architecture: Joystick-Deflection
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Model Architecture: Performance Proficiency
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Model Architecture: BERT Sentence
Embeddings
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Model Architecture: Embodied Direction

Classifier (EDC)

. Final task to ground linguistic representation from BERT embeddings to
situated embeddings defined by numerical data models

. Classification model would essentially embody the operational physics of the
disorienting balancing task through human performance data, and has
grounding annotations of positional language (“where am 1?”)

. Input to EDC is three-fold

- Joystick-Deflection Embeddings extracted from penultimate layer of
the Joystick-Deflection Prediction Model representing what magnitude
and direction user should deflect joystick to maintain balance

- Performance Embeddings extracted from pre-softmax layer of the
Performance Proficiency Classifier representing how well user can
gauge their position and direction

- BERT Sentence Embeddings for positional thought vectors (“where
am 1?”) are extracted

. Model would predict the grounded directional label (left, right or center), “where
should | go?” for better balance

. EDC would give cues to guide a human participant through linguistic instruction
to either deflect the joystick to the left, right, or do nothing (center)
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Evaluation

. Randomly selected 12 participants from the trial ~ 4 from each Proficiency group

. Out of 40 trials for each participant; 38 used for train set & 2 for test set

. Sliding window size: 1000ms, look-ahead time: 400ms

. After data processing, ended up with about 1.7 million training samples and 80,000 testing samples; ~95:5 train-test split
. All neural networks have 3 layers (100 units each, tanh activation), trained with Adam optimization for 50,000 epochs

. Joystick-Deflection Prediction Model trained with MSE Loss and both Performance Proficiency Classifier and EDC trained
with Cross Entropy Loss and final softmax layer

. Embedding size of 100 for Joystick-Deflection model and Performance Proficiency Classifier each, BERT embedding size is
768
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Results

. “Correct” answer: both human and model make/predict the same Overall Bad Medium Good
deflection choice

LEFT 73 69 76 77
. EDC'’s precision, recall, and F1 for target labels, i.e., left, right, and Prec. RIGHT 71 73 67 74
center for each proficiency group CENTER 85 65 84 91
. L : : : LEFT 76 73 76 80
BE-id prof|C|enc.:y group; they think they are in the center, .but model Rec. RIGHT 7 7 74 73
thinks otherwise. However, they have better understanding of CENTER 84 62 81 9]
being in the left or right problem space. T 75 T 76 14
. Better proficiency groups (Medium & Good) have better F1 RIGHT 72 73 70 73
understandings of where they are, especially in the center. CENTER 83 63 52 9l
Acc. 80 69 78 87

Table 1: EDC performance as %.
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Discussion cont’'d

* Fig. 5 - misclassified samples from each proficiency group with truth
label center but EDC predicts left/right label; Bad(top) user closer to
right crash boundary, Medium(middle) & Good(bottom) users either
drifting or in left region

* Model predictions seem more objectively true as it learns better intuitive
representations from combination of embodied data and language data
from better participants

« Shows that EDC learns a better model of both disoriented balancing
task performance and can perform as an in-the-moment guidance tool
through language by learning from multiple participants
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Conclusions and future work

. Ultimate goal — train Al to provide humans real-time guidance during an embodied task such as the MARS balancing or
similar
. Model's apparent mislabels may be more “objectively” correct
. Future work
—  Are there better cues to guide humans other than linguistic cues?

— Improve situated embodiment with the speed/velocity of MARS i.e., thought vectors representing statements like “too
fast” or “in control”.

— Ablation studies to quantify the effect of each type of embedding, especially the role of language

— Adapt the virtual inverted pendulum environment of Vimal et al. (2020) to facilitate additional high throughput studies
with language e.g., subjects call out their perceived direction in real-time, etc.

— Improve intermediate models using techniques like LSTMs and GRUs to pick up on time-series patterns

—  Train models to provide cues/directions greater than 400ms in future to account for different human reaction times
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Thank you!

—_— {sheikh.mannan, nkrishna}@colostate.edu
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