# Where am I and where should I go? Grounding positional and directional labels in a disoriented human balancing task Sheikh Mannan and Nikhil Krishnaswamy

(Dis)embodiment Conference, September 15-16, 2022, Gothenburg, Sweden



Colorado State University

## Outline

- Introduction
- MARS balancing task
- Data
- Model architecture
- Evaluation
- Results
- Discussion
- Conclusions and future work



### Introduction

- Meteoric rise of large language models (LLMs) facilitate coherent, grammatical text generation using high-dimensional representations of language
- LLMs still fail at understanding the current situational context that comes from non-textual (or non-visual) context
- Consider human spatial disorientation, where even expert humans subject to gravitational transitions where gravitational cues sensed by the vestibular system are absent, lead to fatal accidents (Shelhamer, 2015; Cowings et al., 2018)
- Numerical AI models with access to quantitative information about position and movement can potentially determine when humans may lose control and intervene by telling humans what to do
- Can embeddings from such numerical models grounded with BERT (Devlin et al., 2019) embeddings representing thought vectors for position embody a spaceflight-analog balancing task and act as a countermeasure for spatial disorientation?







#### MARS balancing task

- Multi-Axis Rotation (MARS)
  device
- MARS programmed with inverted pendulum dynamics
- Crash limits set to +/- 60° from the Direction of Balance (DOB)
- Subjects balance themselves about the supine axis with blindfolds and noise cancelling headphones







- MARS data from Vimal et al. (2020)
  - 34 participants with performing 40 trials over 2 days, each trial 100 seconds long
  - primary data points collected: *angular position, angular velocity & joystick deflections*
- Proficiency labels from Vimal et al. (2020)
  - participants clustered based on their balancing performance using various engineered features, such as Crash frequency, Anticipatory joystick deflections, Destabilizing joystick deflections, etc.
  - **Proficient** (or "Good"), **Somewhat Proficient** (or "Medium"), and **Not Proficient** (or "Bad")
- Positional and Direction labels (our addition)
  - for grounding the situated numerical features from the MARS to a linguistic representation
  - representations would be possible answers to the questions "where am I?" and "where should I go?"
  - for position relative to the DOB a human may think "I have drifted more towards the right"; generated by third-party annotators for each of the three regions *left, right,* and *center*
  - for direction, the human would have 3 choices to deflect the joystick left, right, or center



#### Data

- MARS data from Vimal et al. (2020)
  - 34 participants with performing 40 trials over 2 days, each trial 100 seconds long
  - primary data points collected: angular position, angular velocity & joystick deflections
- Proficiency labels from Vimal et al. (2020)
  - participants clustered based on their balancing performance using various engineered features, such as Crash frequency, Destabilizing joystick deflections, etc.
  - Proficient (or "Good"), Somewhat Proficient (or "Medium"), and Not Proficient (or "Bad")
- Positional and Direction labels (our addition)
  - for grounding the situated numerical features from the MARS to a linguistic representation
  - representations would be possible answers to the questions "where am I?" and "where should I go?"
  - for position relative to the DOB a human may think "I have drifted more towards the right"; generated by third-party annotators for each of the three regions *left, right,* and *center*
  - for direction, the human would have 3 choices to deflect the joystick *left, right, or center*



#### Data

- MARS data from Vimal et al. (2020)
  - 34 participants with performing 40 trials over 2 days, each trial 100 seconds long
  - primary data points collected: angular position, angular velocity & joystick deflections
- Proficiency labels from Vimal et al. (2020)
  - participants clustered based on their balancing performance using various engineered features, such as Crash frequency, Anticipatory joystick deflections, Destabilizing joystick deflections, etc.
  - **Proficient** (or "Good"), **Somewhat Proficient** (or "Medium"), and **Not Proficient** (or "Bad")
- Positional and Direction labels (our addition)
  - for grounding the situated numerical features from the MARS to a linguistic representation
  - representations would be possible answers to the questions "where am I?" and "where should I go?"
  - for position relative to the DOB a human may think "I have drifted more towards the right"; generated by third-party annotators for each of the three regions *left, right,* and *center*
  - for direction, the human would have 3 choices to deflect the joystick *left, right,* or *center*



#### Model Architecture

- 1. Data Preprocessing
- 2. Joystick-Deflection Prediction Model
- 3. Performance Proficiency Classifier
- 4. BERT Sentence Embeddings
- 5. Embodied Direction Classifier (EDC)



#### Model Architecture: Data Preprocessing

- Fixed sliding window technique to extract segments of joystick deflections, angular velocity and positions
- User in control and no crashes occurred while looking ahead **y** seconds in the future
- For each viable window, random sentence annotation assigned for region corresponding to the user's average position in the window, e.g., "I think I am somewhere in the center" or "I have drifted more towards the right."
- Direction label assigned to joystick deflection made by user y seconds in the future indicating ground truth label of "where should I go?"



#### Model Architecture: Joystick-Deflection Prediction Model

- "Where should I go?", numerical model
- Inputs are 1000ms segments of joystick deflections, positions and velocities, and target values are joystick deflections made y seconds in the future.
- Model should tell how a user should deflect their joystick to balance themselves





#### Model Architecture: Performance Proficiency Classifier

- "Where am I?", numerical model
- Need to account how well user is performing the balancing task
- Same inputs as Joystick-Deflection Prediction Model, target labels are discrete proficiency labels of the participant for each sample; *Proficient, Somewhat Proficient,* and *Not Proficient*





### Model Architecture: BERT Sentence Embeddings

- "Where am I?", linguistic representations of position
- Pretrained BERT to extract pooled sentence embedding (the embedding of the [CLS] token) of size 768
- Embeddings extracted for position annotations of each window e.g., "I think I am somewhere in the center" or "I have drifted more towards the right."
- Natural language representation serves as literal "thought vector," representing the "where am I?" grounded positional label input to final classifier



#### Model Architecture: Embodied Direction Classifier (EDC)

- Final task to ground linguistic representation from BERT embeddings to situated embeddings defined by numerical data models
- Classification model would essentially embody the operational physics of the disorienting balancing task through human performance data, and has grounding annotations of positional language ("where am I?")
- Input to EDC is three-fold
  - Joystick-Deflection Embeddings extracted from penultimate layer of the Joystick-Deflection Prediction Model representing what magnitude and direction user should deflect joystick to maintain balance
  - Performance Embeddings extracted from pre-softmax layer of the Performance Proficiency Classifier representing how well user can gauge their position and direction
  - BERT Sentence Embeddings for positional thought vectors ("where am I?") are extracted
- Model would predict the grounded directional label (left, right or center), "where should I go?" for better balance
- EDC would give cues to guide a human participant through linguistic instruction to either deflect the joystick to the left, right, or do nothing (center)



#### **Evaluation**

- Randomly selected 12 participants from the trial ~ 4 from each Proficiency group
- Out of 40 trials for each participant; 38 used for train set & 2 for test set
- Sliding window size: 1000ms, look-ahead time: 400ms
- After data processing, ended up with about 1.7 million training samples and 80,000 testing samples; ~95:5 train-test split
- All neural networks have 3 layers (100 units each, tanh activation), trained with Adam optimization for 50,000 epochs
- Joystick-Deflection Prediction Model trained with MSE Loss and both Performance Proficiency Classifier and EDC trained with Cross Entropy Loss and final softmax layer
- Embedding size of 100 for Joystick-Deflection model and Performance Proficiency Classifier each, BERT embedding size is 768



#### Results

- "Correct" answer: both human and model make/predict the same deflection choice
- EDC's precision, recall, and F1 for target labels, i.e., left, right, and center for each proficiency group
- Bad proficiency group; they think they are in the center, but model thinks otherwise. However, they have better understanding of being in the left or right problem space.
- Better proficiency groups (Medium & Good) have better understandings of where they are, especially in the center.

|       |        | Overall | Bad | Medium | Good |
|-------|--------|---------|-----|--------|------|
|       | LEFT   | 73      | 69  | 76     | 77   |
| Prec. | RIGHT  | 71      | 73  | 67     | 74   |
|       | CENTER | 85      | 65  | 84     | 91   |
| Rec.  | LEFT   | 76      | 73  | 76     | 80   |
|       | RIGHT  | 73      | 72  | 74     | 73   |
|       | CENTER | 84      | 62  | 81     | 91   |
|       | LEFT   | 75      | 71  | 76     | 78   |
| F1    | RIGHT  | 72      | 73  | 70     | 73   |
|       | CENTER | 85      | 63  | 82     | 91   |
| Acc.  |        | 80      | 69  | 78     | 87   |

Table 1: EDC performance as %.



Figure 4: (a) represents the confusion matrix for the full test set of the EDC. (b), (c), and (d) are broken down by proficiency group over the same test set.

#### Discussion

- Confusion matrices further validate performance of model for each proficiency groups
- Amount of time spent moving left/right (for correctly classified samples); Bad participants ~72%, Medium and Good participants spend an average of 42% and 25% respectively
- EDC model trained on data from all proficiency groups, makes decisions that align, in aggregate, with a Somewhat Proficient participant.



### Discussion cont'd

- Fig. 5 misclassified samples from each proficiency group with truth label center but EDC predicts left/right label; Bad(top) user closer to right crash boundary, Medium(middle) & Good(bottom) users either drifting or in left region
- Model predictions seem more objectively true as it learns better intuitive representations from combination of embodied data and language data from better participants
- Shows that EDC learns a better model of both disoriented balancing task performance and can perform as an in-the-moment guidance tool through language by learning from multiple participants



#### Discussion cont'd

- Fig. 6 shows samples labeled center where the human does not move the joystick, but the classifier predicted an optimal movement to the left (top plot) or right (bottom plot).
- Proficient and Somewhat Proficient samples mostly in center region making slight deflections - model predicts best move is a stronger deflection
- Not Proficient participants much wider spread of average positions. EDC disagrees with them, demonstrating the ability of the EDC to make objectively "good" decisions in the context of this task.



## Conclusions and future work

- Ultimate goal train AI to provide humans real-time guidance during an embodied task such as the MARS balancing or similar
- Model's apparent mislabels may be more "objectively" correct
- Future work
  - Are there better cues to guide humans other than linguistic cues?
  - Improve situated embodiment with the speed/velocity of MARS i.e., thought vectors representing statements like "too fast" or "in control".
  - Ablation studies to quantify the effect of each type of embedding, especially the role of language
  - Adapt the virtual inverted pendulum environment of Vimal et al. (2020) to facilitate additional high throughput studies with language e.g., subjects call out their perceived direction in real-time, etc.
  - Improve intermediate models using techniques like LSTMs and GRUs to pick up on time-series patterns
  - Train models to provide cues/directions greater than 400ms in future to account for different human reaction times



## Thank you!

{sheikh.mannan, nkrishna}@colostate.edu



#### References

 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
 Computational Linguistics: Human Language Technologies. Volume 1 (Long and Short Papers), pages 4171–4186.

Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics

- Mark Shelhamer. 2015. Trends in sensorimotor research and countermeasures for exploration-class space flights. Frontiers in Systems Neuroscience, 9:115.
- Patricia S. Cowings, William B. Toscano, Millard F. Reschke, and Addis Tsehay. 2018. Psychophysiological assessment and correction of spatial disorientation during simulated Orion spacecraft re-entry International Journal of Psychophysiology, 131:102–112.
- Vivekanand Pandey Vimal, Han Zheng, Pengyu Hong, Lila N Fakharzadeh, James R Lackner, and Paul DiZio. 2020. Characterizing individual differences in a dynamic stabilization task using machine learning. Aerospace medicine and human performance, 91(6):479–488.
- https://towardsdatascience.com/bert-explained-state-of-the-art-language-model-for-nlp-f8b21a9b6270