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Introduction

• Meteoric rise of large language models (LLMs) facilitate coherent, grammatical text generation using high-dimensional 

representations of language

• LLMs still fail at understanding the current situational context that comes from non-textual (or non-visual) context

• Consider human spatial disorientation, where even expert humans subject to gravitational transitions where gravitational 

cues sensed by the vestibular system are absent, lead to fatal accidents (Shelhamer, 2015; Cowings et al., 2018)

• Numerical AI models with access to quantitative information about position and movement can potentially determine when 

humans may lose control and intervene by telling humans what to do

• Can embeddings from such numerical models grounded with BERT (Devlin et al., 2019) embeddings representing thought 

vectors for position embody a spaceflight-analog balancing task and act as a countermeasure for spatial disorientation?



MARS balancing task

• Multi-Axis Rotation (MARS) 

device

• MARS programmed with inverted 

pendulum dynamics

• Crash limits set to +/- 60º from the 

Direction of Balance (DOB)

• Subjects balance themselves 

about the supine axis with 

blindfolds and noise cancelling 

headphones



Data

• MARS data from Vimal et al. (2020)

– 34 participants with performing 40 trials over 2 days, each trial 100 seconds long

– primary data points collected: angular position, angular velocity & joystick deflections

• Proficiency labels from Vimal et al. (2020)

– participants clustered based on their balancing performance using various engineered features, such as Crash 

frequency, Anticipatory joystick deflections, Destabilizing joystick deflections, etc.  

– Proficient (or “Good”), Somewhat Proficient (or “Medium”), and Not Proficient (or “Bad”)

• Positional and Direction labels (our addition)

– for grounding the situated numerical features from the MARS to a linguistic representation

– representations would be possible answers to the questions “where am I?” and “where should I go?” 

– for position relative to the DOB a human may think “I have drifted more towards the right”; generated by third-party 

annotators for each of the three regions left, right, and center

– for direction, the human would have 3 choices to deflect the joystick left, right, or center 
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Model Architecture

1. Data Preprocessing

2. Joystick-Deflection Prediction 

Model

3. Performance Proficiency 

Classifier

4. BERT Sentence Embeddings

5. Embodied Direction Classifier 

(EDC)



Model Architecture: Data Preprocessing

• Fixed sliding window technique to extract segments of joystick 

deflections, angular velocity and positions

• User in control and no crashes occurred while looking ahead y 

seconds in the future

• For each viable window, random sentence annotation assigned for 

region corresponding to the user’s average position in the window, 

e.g., “I think I am somewhere in the center” or “I have drifted more 

towards the right.”

• Direction label assigned to joystick deflection made by user y

seconds in the future indicating ground truth label of “where 

should I go?” 



Model Architecture: Joystick-Deflection 

Prediction Model

• “Where should I go?”, numerical model

• Inputs are 1000ms segments of joystick deflections, positions and 

velocities, and target values are joystick deflections made y

seconds in the future.

• Model should tell how a user should deflect their joystick to 

balance themselves



Model Architecture: Performance Proficiency 

Classifier

• “Where am I?”, numerical model

• Need to account how well user is performing the 

balancing task

• Same inputs as Joystick-Deflection Prediction Model, 

target labels are discrete proficiency labels of the 

participant for each sample; Proficient, Somewhat 

Proficient, and Not Proficient



Model Architecture: BERT Sentence 

Embeddings

• “Where am I?”, linguistic representations of position

• Pretrained BERT to extract pooled sentence embedding (the 

embedding of the [CLS] token) of size 768

• Embeddings extracted for position annotations of each window 

e.g., “I think I am somewhere in the center” or “I have drifted 

more towards the right.”

• Natural language representation serves as literal “thought 

vector,” representing the “where am I?” grounded positional 

label input to final classifier



Model Architecture: Embodied Direction 

Classifier (EDC)
• Final task to ground linguistic representation from BERT embeddings to 

situated embeddings defined by numerical data models

• Classification model would essentially embody the operational physics of the 

disorienting balancing task through human performance data, and has 

grounding annotations of positional language (“where am I?”)

• Input to EDC is three-fold

– Joystick-Deflection Embeddings extracted from penultimate layer of 

the Joystick-Deflection Prediction Model representing what magnitude 

and direction user should deflect joystick to maintain balance

– Performance Embeddings extracted from pre-softmax layer of the 

Performance Proficiency Classifier representing how well user can 

gauge their position and direction

– BERT Sentence Embeddings for positional thought vectors (“where 

am I?”) are extracted

• Model would predict the grounded directional label (left, right or center), “where 

should I go?” for better balance

• EDC would give cues to guide a human participant through linguistic instruction 

to either deflect the joystick to the left, right, or do nothing (center)



Evaluation

• Randomly selected 12 participants from the trial ~ 4 from each Proficiency group

• Out of 40 trials for each participant; 38 used for train set & 2 for test set

• Sliding window size: 1000ms, look-ahead time: 400ms

• After data processing, ended up with about 1.7 million training samples and 80,000 testing samples; ∼95:5 train-test split

• All neural networks have 3 layers (100 units each, tanh activation), trained with Adam optimization for 50,000 epochs

• Joystick-Deflection Prediction Model trained with MSE Loss and both Performance Proficiency Classifier and EDC trained 

with Cross Entropy Loss and final softmax layer

• Embedding size of 100 for Joystick-Deflection model and Performance Proficiency Classifier each, BERT embedding size is 

768



Results

• “Correct” answer: both human and model make/predict the same 

deflection choice

• EDC’s precision, recall, and F1 for target labels, i.e., left, right, and 

center for each proficiency group

• Bad proficiency group; they think they are in the center, but model 

thinks otherwise. However, they have better understanding of 

being in the left or right problem space.

• Better proficiency groups (Medium & Good) have better 

understandings of where they are, especially in the center.



Discussion

• Confusion matrices further validate 

performance of model for each 

proficiency groups

• Amount of time spent moving 

left/right (for correctly classified 

samples); Bad participants ∼72%, 

Medium and Good participants 

spend an average of 42% and 25% 

respectively

• EDC model trained on data from all 

proficiency groups, makes decisions 

that align, in aggregate, with a 

Somewhat Proficient participant.



Discussion cont’d

• Fig. 5 - misclassified samples from each proficiency group with truth 

label center but EDC predicts left/right label; Bad(top) user closer to 

right crash boundary, Medium(middle) & Good(bottom) users either 

drifting or in left region

• Model predictions seem more objectively true as it learns better intuitive 

representations from combination of embodied data and language data 

from better participants

• Shows that EDC learns a better model of both disoriented balancing 

task performance and can perform as an in-the-moment guidance tool 

through language by learning from multiple participants



Discussion cont’d

• Fig. 6 - shows samples labeled center where the human does not 

move the joystick, but the classifier predicted an optimal movement 

to the left (top plot) or right (bottom plot).

• Proficient and Somewhat Proficient samples - mostly in center 

region making slight deflections - model predicts best move is a 

stronger deflection

• Not Proficient participants - much wider spread of average 

positions. EDC disagrees with them, demonstrating the ability of 

the EDC to make objectively “good” decisions in the

context of this task. 



Conclusions and future work

• Ultimate goal – train AI to provide humans real-time guidance during an embodied task such as the MARS balancing or 

similar

• Model’s apparent mislabels may be more “objectively” correct

• Future work

– Are there better cues to guide humans other than linguistic cues?

– Improve situated embodiment with the speed/velocity of MARS i.e., thought vectors representing statements like “too 

fast” or “in control”. 

– Ablation studies to quantify the effect of each type of embedding, especially the role of language

– Adapt the virtual inverted pendulum environment of Vimal et al. (2020) to facilitate additional high throughput studies 

with language e.g., subjects call out their perceived direction in real-time, etc. 

– Improve intermediate models using techniques like LSTMs and GRUs to pick up on time-series patterns

– Train models to provide cues/directions greater than 400ms in future to account for different human reaction times



Thank you!

{sheikh.mannan, nkrishna}@colostate.edu
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