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NK What is a coconut?

Introduction

A coconut is a large fruit that is native to tropical regions. It comes from the coconut palm
tree, scientifically known as Cocos nucifera. Coconuts have a hard, brown, and fibrous outer
shell, known as the husk or exocarp. Inside the husk, there is a thick, woody layer called the

endocarp. The endocarp surrounds the seed, which is the part we commonly refer to as the

. A common critique of language models is that they are coconut.
“‘ungrounded”
The seed of the coconut is actually the largest known seed in the world. It is typically oval-
¢ Lack ab”lty to link an utterance to a communicative intent shaped and covered with a thin brown skin called the testa. Beneath the testa, there is a
° A Sophisticated |anguage model can generate text about white, fleshy, and edible part called the coconut meat or kernel. The coconut meat isrichin

healthy fats, dietary fiber, and various nutrients. It is often used in cooking, baking, and

an object without understanding what the object is &~ e [

‘ Groundlng usually involves recourse to another mOda“ty Within the coconut, there is also a watery liquid known as coconut water or coconut juice.

° Wealth of research in cross-modal semantic |inking, This liquid is found in the center of the coconut and is often consumed as a refreshing
|anguage grounding to images beverage due to its natural sweetness and hydrating properties.

Coconuts are widely cultivated and consumed in many tropical regions around the world.
They have numerous uses and are used in various forms such as fresh coconuts, coconut
milk, coconut oil, coconut flour, and shredded coconut, among others. They are not only
valued for their culinary applications but are also utilized for their fibrous husks and shells in

products like ropes, mats, brushes, and activated charcoal.
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Introduction

. “Multimodal” doesn’t just mean language+vision
. Humans don’t just use images as their only non-linguistic modality

. A wealth of environment and sensory experience is implicated in learning
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Introduction

. We take an embodied simulation approach to grounding

. Use a virtual environment to create experiences for an agent interacting with various objects

. Object motions leave trajectories in space based on their geometric properties and affordances

. Similarity learning over agent’s experience can make analogical comparisons between object types ...

. ... and appears to learn more abstract properties of the objects

. Words for concrete nouns (object types) are easy to ground to this representation space using affine transformation
. Grounding concrete terms provides a scaffold for learning and distinguishing the meaning of other terms in context

. Explore the properties of different language models for grounding concrete objects to the learned space vs. abstract terms
(verbs, properties, etc.)

Colorado State University



Schematic Overview

Simulated
environment

Representation Space

Similarity
Learning

k-NN
Classification

Object embeddings

Sentence corpus

Colorado State University

LLM Encoders
BERT, RoBERTa,
ALBERT, XLM

—>» Token embeddings

: : Bri i

Linear rl-dge rllclige matrix

regression LM—Obj
A



Why Do We Think This Will Work?

. As humans map object concept representations to nouns, they also learn to individuate
them from the perceptual flow, based on experience and interaction, not just visual
features but also (Spelke, 1985; Spelke et al., 1989; Spelke, 1990; Baillargeon, 1987)

. Gentner (2006) argues that variability in verbal semantics (Talmy, 1975) helped explain
why nouns are typically learned before verbs

. Problem: neural language and “object” (based on visual or tabular data) representation
spaces are not directly comparable

. Affine transformation technique between embedding spaces has been successfully
used in vision and language use cases (McNeely-White et al., 2022; Nath et al., 2022)

. Here we explore applicability in a cross-modal setting
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Similarity Learning of Object Properties

. Dataset: Samples gathered from an agent stacking objects in a virtual environment

. Behavior of different object types under interaction (stacking)

. Object behavior bootstrapped with ontological knowledge about symmetry

. E.g., Objects placed on their rounded edges are more likely to roll

. Object trajectories, geometric features captured through simulated environment

. Object types: cube, sphere, cylinder, capsule, egg, pyramid, cone, rectangular prism, small cube
. Captured 43 numerical values describing each object interaction

. action taken, object position before and after action, orientation before and after action, spatial relations between
objects, etc. (Ghaffari and Krishnaswamy, 2022)
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Similarity Learning of Object Properties

n

1 1 1
Use a CNN with multisimilarity loss — )" | —log| 1+ ) 1+ e [+ 5 log[ 1+ ) 1+e/S?|] to classify objects by type

i n a

. Construct a similarly matrix S where S, is the similarity of samples {x;, x,} according to neural network f with weights &
. Adam optimization, LR 5x10-6, batch size 70, 20 epochs, embedding size 64
. Train only on a subset of objects (cube, sphere, egg, capsule, small cube, rectangular prism, pyramid)
. Objects that are all flat-sided or all round-sided
. Two objects (cylinder, cone) have both flat and round sides
. Split these samples based on their stacking behavior (stays stacked vs. falls off)

. Test set includes seven seen classes and four unseen classes
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Similarity Learning of Object Properties

1.0
cube 0 0o 0 ©0 005 O 0 O
. Neural approaches successfully sphere 1 0 0 0 RO 0 R 0 e
classify these geometric features into eggd © 0O 0 001 0 005 0.8
different object types o e o e
rectp -
. Unseen classes are also classifiable
. . 4 0 0 0.08 0 0.03 0 0.6
using KNN over embeddings s 7
Q
. . £ ]l 0 0 0 0 0 0
«  Where confusion arises, they are y Smicube
between different flat and different T gs{ 0 0 0 009 0 002 s
round objects
ylf{003 0 0 0 017 O 0 035 0 045 O
. Never between these classes o oos o o o oFE . BN . ..
Cyl-l’ . . . . .
«  Model appears to learn contrast | [ 02
. ., . , cone-f4 0.04 0 0o o 0 0 0 (046 O 0
between “flatness” and “roundness
coner{ 0 0 002 0o 0 0 0 0 001 o0 §EY
T T T T T T T T T T 00
@ 2 O Q & 2 X X X A
F S E S S S S

Predicted label
accuracy=0.8245; misclass=0.1755
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Similarity Learning of Object Properties

0.8 1
. Neural approaches successfully 0.6 -
classify these geometric features into
: . 0.4 ® cube
different object types ® sphere
. ] @
. Unseen classes are also classifiable e €99
] ] ~ + I'ECtp
using KNN over embeddings € 007 ® pyr
. . ® smicube
. Where confusion arises, they are -0.2 1 ° sl
between different flat and different 04 ® qoylf
round objects ® ok
-0.6 ® coone-f
. Never between these classes ® cone-r
. Model appears to learn contrast -08 -06 -04 -02 0.0 0.2 04 0.6 0.8

PC1

between “flatness” and “roundness”
800 test samples

. Two distinct “flat” and “round” clusters!
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Language Grounding to Environment

0.8 1
. Individual embeddings of the same object 0.6 -
type form a high-dimensional region defining
: : 0.4 ® abe
the object representation ® sphere
«  Ethayarajh (2019) observed similar e : ok
phenomena in the representations of g o0- o pyrp
contextualized token vectors from LLMs 02 - - Sm'lcube
. Suggests a structure-preserving mapping 04 : gls-f
exists between equivalent regions in ® qolr
different embedding space B . 22::
- Affine transformation preserves collinearity, 08 -06 -04 -02 00 02 04 06 08
parallelism PC1
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Language Grounding to Environment

0.8 1
. RQ: If agent encounters novel objects, can 0.6 -
it learn words for them by grounding
tokens to the object representation space? 04
1. Prompt language model: Generate - e
sentences containing target term to be x 007
grounded ~0.2
2. Extract token representations: For each 0.4
instance of target token, extract
contextualized numerical representation B
3. Linear regression between paired

embedding vectors: Compute

transformation ./ € R% x R% with ridge
regression
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Language Grounding to Environment

0.8 1
. Given two models: language model A and 0.6 1
object representation model B, token
: : . 0.4 ® cube
representations in A and object ® sphere
representations in B form subspaces in the 0.2 4 * egg
: ~N ® rectp
embedding spaces O 00 . i
. Vectors chosen from respective embedding —0.2 - ® smicube
. : ' o |
spaces form at minimum the spanning set of 8 gff
) : -0.4 -
the respective regions o olr
-0.6 ® coone-f
. Vectors chosen to compute .Z represent & e
similar, non-identical instances of token/object 08 -06 -04 -02 00 02 04 06 08

. Optimal ./ structure-preserving
transformation that transforms new object-denoting tokens into the object-representation region
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Language Grounding to Environment

0.8 -
4. Dialogue with a language model: Generate novel 06 -
sentences containing instances of the 0s S e
transformed (“grounded”) target term ' ® sphere
5. Extract token-level representations: cf. Step 2 s : ergftp
6. Transform new tokens into object space: £ 007 ® pyr
evaluation - do the expected senses of grounded  -0.2 - : f:s'lcum
terms cluster with the right objects? 04 ® oylf
+ Sentence generation: ChatGPT e f g:];f
* Prompt ChatGPT with sentences about objects . et

and their properties, e.g., “Write 40 short 08 -06 -04 -02 %'gl cz 04 06 0B
sentences about how blocks are flat on all sides
and can be stacked” (total corpus of 440 sentences)

» Take the most frequently occurring domain-appropriate tokens as candidate target terms
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Language Grounding to Environment

0.8 -
» Take most frequently occurring domain 0.6 -
appropriate tokens as candidate target terms
0.4 ® cube
* Not just object terms ® sphere
_ 0.2 * egqg
* Properties: “flat”/“round”, “stable”/“unstable" g o ® rectp
« Behaviors: “stack”/“roll”, “stand”/“fall” e pr
~0.2 ® smicube
* What happens to these terms as object terms are ® sl
grounded? -0.4 - ® oylf
e olr
* Pull token representations from 4 LMs: —0.6 1 ® cone-f
© cone-r
* BERT, RoBERTa, ALBERT, XLM 08 -06 -04 -02 00 02 04 06 08
« Compute transformation using only object token PC1

vectors and object behavior vectors
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Language Grounding to Environment

» 5 contextualized embeddings of each target word
paired with 5 randomly selected representations
of the associated object

 Calculate “bridge matrix” using ridge regression

» Perform iterative experiments, incrementally
adding new object concepts to improve the
transformation

» Order adapted from Ghaffari and
Krishnaswamy (2022)

» Evaluate transformation by transforming word
vectors for concepts not used in computing
bridge matrix

0.8 1

-04 -02

» Evaluate KNN classification of terms, and separation of cluster centers

SN BN BN BN BN BN BN BN BN BN

cube
sphere
€09
rectp
pyr
smicube
sl
cyl-f
cyl-r
cone-f
cone-r

 Final step: explicit “hint” including 5 embeddings of the novel concept to be grounded and a co-occurring object word
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Language Grounding to Environment

» Transformed token clusters separate even when they’re never explicitly seen in transformation

0.8 4
0.6
044 ® <aube
02 ® sphere
& €gg
0.0 - e rectp
® ® pPr
-0.2 ® smicube
e sl
-0.4 e olf
e oylr
-0.6 ® cone-f
© cone-r

08 -06 -04 -02 00 02 04 06 08 075 —050 —025 000 035 050 075 08 -06 -04 -02 00 02 04 06 08

XLM: “flat” (pink) vs. “round” (black)
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Language Grounding to Environment

» Transformed token clusters separate even when they’re never explicitly seen in transformation

Transformation using only cube, sphere, and egg

08 08
06 - 06 -
ol ek ® cube
021 02 ® sphere
* g0
0.0 4 0.0 e rectp
® ® pyr
-0.2 -02 ® smicube
e sl
-0.4 -04 o olf
o olr
-0.6 -06 ® cone-f
Q cone-r
08 -06 -04 -02 00 02 04 06 08 075 —050 —025 000 035 050 075 08 -06 -04 -02 00 02 04 06 08

XLM: “flat” (pink) vs. “round” (black)
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Language Grounding to Environment

» Transformed token clusters separate even when they’re never explicitly seen in transformation

Transformation using only cube, sphere, and egg Using all objects

0.8 4 . o 0.8 4
o%, e *
06 *2 "P s 06 -
o L
®
el e ©g° - .~ © 041 e cbe
0.2 1 . {'. 02 e sphere
. %S ' * egg
0.0 0.0 4 e rectp
® ® pyr
-0.2 -02 ® smicube
e sl
-0.4 -04 o olf
o olr
-0.6 -06 ® cone-f
Q cone-r
08 -06 -04 -02 00 02 04 06 08 075 —050 —025 000 035 050 075 08 -06 -04 -02 00 02 04 06 08

XLM: “flat” (pink) vs. “round” (black)
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Transformation using only cube, sphere, and egg

0.8 A
0.6 1
0.4 1
0.2 1

0.0 1

Language Grounding to Environment

» Transformed token clusters separate even when they’re never explicitly seen in transformation

Using all objects + “hint”

o

v.
L

Using all objects

0.8 4

0.6 4

0.4

0.2 4

0.0 4

-075 -050 -025 000 025 0.50 0.75 -08 -06 -04 -02 00 02 0.4 0.6 08

XLM: “flat” (pink) vs. “round” (black)

OO0 000000 * 00

cube
sphere
€gg
rectp
pyr
smlicube
sl
cyl-f
cyl-r
cone-f
cone-r
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Language Grounding to Environment

« Clusters of transformed abstract concept vocabulary separate when transformation includes object words

* but different models representations behave differently

0.8 4
0.6 1
0.4 1
® <cube
0.2 - ® sphere
& €gg
00 e rectp
@ pyr
-0.2 ® smicube
e sl
e olr
-0.6 @ cone-f
_0 N 8 T T T T T T T T T T T T T T T T w mne-r
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 100 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 100

BERT: “flat” vs. “round” (black) without hinting [L] and with [R]
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Language Grounding to Environment

« Clusters of transformed abstract concept vocabulary separate when transformation includes object words

* but different models representations behave differently

0.8 4
0.6 4
0.4 4 ® <«ube
02 4 ® sphere
& €gg
0.0 4 ® rrectp
@ pyr
-0.2 ® smicube
o sl
-04 e olf
o olr
-0.6 ® cone-f
© <oone-r
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Language Grounding to Environment

« Clusters of transformed abstract concept vocabulary separate when transformation includes object words

* but different models representations behave differently

0.8 - 08
0.6 1 0.6 -
0.4 - 0.4 4
® <aube
0.2 4 0.2 ® sphere
® €gg
0.0 4 0.0 ® rectp
~0.2 ® pyr
-0.2 ® smicube
-04 e sl
-04 e olf
-0.6 o olr
-0.6 @ coone-f
-08 @ <cone-r
10 100 -075 -050 -025 000 025 050 075

ALBERT: “flat” vs. “round” (black) without hinting [L] and with [R]
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Language Grounding to Environment

« Clusters of transformed abstract concept vocabulary separate when transformation includes object words

* but different models representations behave differently

0.8 - . . 0.8 -
o *®
0.6 - L ¥ ] "'? | 0.6 -
ok ol e aube
0.2 - 02 ® sphere
® €gg
0.0 4 0.0 ® rrectp
o ® pyr
-02 -0.2 ® smicube
e sl
-04 -04 e lf
o olr
-06 -0.6 ® cone-f
© cone-r
-075 -050 -025 000 0.25 0.50 0.75 -08 -06 -04 -02 00 02 04 06 0.8

XLM: “flat” vs. “round” (black) without hinting [L] and with [R]
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Language Grounding to Environment

* How does addition of information to the transformation affect the similarity of concept clusters?

0.8 4
0.6
044 ® <aube
02 ® sphere
& €gg
0.0 4 ® rectp
® ® pPr
-0.2 ® smicube
e sl
-0.4 e olf
o olr
-0.6 ® cone-f
© cone-r

08 -06 -04 -02 00 02 04 06 08 075 —050 —025 000 035 050 075 08 -06 -04 -02 00 02 04 06 08

XLM: “flat” (pink) vs. “round” (black)
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Language Grounding to Environment

» Separation of cluster centers (object terms first)

10 10
08 08
Z Z
5 06 £
= = 06
£ £
= 04 w
c —— flat/round c — flat/round
© T 04
% 02 —— stack/roll %J —— stack/roll
—— stable/unstable —— stable/unstable
0.0 —— stand/fall 02 —— stand/fall
—— block/ball —— block/ball
S & S & SN N S & N > >N AN
Q‘\\@Q\&‘vx(’\\\ (\Q’)\\ '&0\\ (‘9@ q,\"& Qb{(b d_&o Q‘\\&*&Q xc\.K\ QQQ}\ &o"(\ C‘S@ e,\“'e ‘\b{{b \&\ID
o 2 @ @ NG
R % & x«}-\o & )’5}0 & > R e & x:,‘?v & §°\°
BERT RoBERTa
10
09 09
08
- >, 08
= =
507 & 07
€ o6 £ os
w w
£ 05 —— flat/round £ 05 —— flat/round
g 0a —— stack/roll g 04 —— stack/roll
—— stable/unstable —— stable/unstable
03 —— stand/fall 03 —— stand/fall
02 —— block/ball 0.2 —— block/ball
$ & > N N AN N S N N N
‘\\&Q&Q@ *?\\ ot\\ IS \o&' & @ ‘\\29 &Qg *‘.\\ ot\\ S \¢‘° & @
\e-,Q Q‘\ * o N & S & \b’q Q.\ & J PN ¥ o &
@ % & & 5 ® R R AN S
ALBERT XLM
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Language Grounding to Environment

» Separation of cluster centers (abstract terms first)

» Grounding object terms helps

10
—_— s
. . . . 08
distinguish related actions or R s
= 06 <]
properties (cf. Gentner (2006)) 2 2,
G G
B B ’ c 02 —— cube/sphere c —— cube/sphere
« But grounding abstract terms isn’t g — oyricpsl g o — pyrreps!
. . .y . = 00 — oylfir = — oylfir
as helpful in making distinctions — conedfir 02 — cone-i
. ' ' —— block/ball —— block/ball
between object terms! R S S S e P
N C o & N
(‘%& & ,":‘%éz ¥ 4 >}°\°b = (‘%\ x‘}?g x{},ﬁz x"}?e >2°\°b *
BERT RoBERTa
10
09 /———""""’”\
08
2 08 2
5 = 0
£ 07 E
w w
= o —— cube/sphere = o4 —— cube/sphere
%J - —— pyr/cpsl %J —— pyr/cpsl
— oylfir — oylfr
05 — cone-fir 02 — cone-fir
—— block/ball —— block/ball
> N X N N % > AN o N AN
&o\)«\ y §o \q'\\)e‘v Qb{@ d:\oo ‘;(@Qz '&o\)«\ y (‘.*5@ \e\oo‘a Qb{@ \‘:\O'b &
@ & &L F 8 b @ & &L F ® %
x
ALBERT XLM
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Language Grounding to Environment

* Formulation as classification task: KNN (k=5) after all object/abstract terms are grounded

* Do transformed word vectors for

object-related concept terms flat/round  stack/roll  stable/unstable stand/fall  block/ball
cluster with the correct set of Models N =103 N =56 N =22 N =10 N =30
objects? BERT 0.89 0.16 0.58 0.60 0.33
e XILM (Iargest model): RoBERTa 0.34 0.16 0.29 0.37 0.67
ALBERT 0.92 0.65 0.58 0.89 0.60

best with hintin
9 XLM 0.73 0.53 0.37 0.29 0.79

« XLM’s larger training and

_ _ _ BERT+hint  0.96 (+0.07)  0.78 (+0.62)  0.91 (+0.63) 1.00 (+0.40)  0.93 (+0.60)
embedding size may make it

_ RoBERTa+hint  0.90 (+0.56) 0.89 (+0.73)  1.00 (+0.71) 1.00 (+0.63)  0.90 (+0.23)
better able to represent multiple ALBERT+hint  0.89 (-0.03)  0.85(+0.20) 0.86 (+0.28) 1.00 (+0.11)  0.66 (+0.06)
word senses XLM+hint 098 (+0.25) 1.00 (+0.47) 0.73 (+0.36) 1.00 (+0.71)  0.97 (+0.18)

« ALBERT (smallest model):
best without hinting

Table 1: Macroaveraged KNN F1 over transformed attribute/verb/synonym word embedding test sets (mapping
computed using object embeddings). Numbers in parentheses show performance increase with “hinting.”
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Language Grounding to Environment

* Hypothesis:

« XLM representation

is less “entangled,” more Models cube/sphere  pyr/cpsl cyl-f/r cone-f/r block/ball
compositional

BERT 0.77 0.46 0.34 0.40 0.83
* ALBERT representation RoBERTa 0.81 0.44 0.40 0.49 0.55
is more “entangled,” ALBERT 0.88 0.88 0.81 0.78 0.46
possible bias toward noun- XLM 040 0.46 0.49 0.36 0.55
verb/adj. correlations BERT+hint  0.97 (+0.20)  1.00 (+0.54) 0.78 (+0.44) 0.84 (+0.44) 0.93 (+0.10)
- Object words and related terms RoBERTa+hint  0.81 (+0.00) 0.94 (+0.50) 0.78 (+0.38)  0.87 (+0.38)  0.90 (+0.35)

ALBERT+hint  0.88 (+0.00) 0.94 (+0.06) 0.87 (+0.06) 0.88 (+0.10) 0.66 (+0.20)

may already have some overlap
XLM+hint 100 (+0.60)  0.97 (+0.51)  0.81 (+0.32) 0.91 (+0.55) 0.97 (+0.42)

in ALBERT space
* Grounding concepts to a physical Table 2: Macroaveraged KNN F1 over transformed object word embedding test sets (mapping computed using
environment without explicit attribute/verb embeddings). Numbers in parentheses show performance increase with “hinting.” N = 30 for all.

nudging may be more challenging for larger models than smaller ones
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Conclusion

. Similarity learning over rich data from an embodied simulation create a representation space that..
. successfully classifies concrete objects
. make analogical comparisons based on abstract properties that inhere across multiple object types

. Used the resulting representation space to investigate the properties of different LLMs regarding object and
concept representations

. Simple ridge regression preserves interchangeability across modalities

. Technique has previously been used in vision-only (McNeely-White et al., 2022) and language-only
conditions (Nath et al., 2022)

. Can use these techniques to make Al models behave similarly to human learning, or to examine the properties of
Al models themselves

. (Not saying humans use the same technique)
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Conclusion

. Our embodied approach allows us to build a model without visual artifacts like occlusion
. Embodiment is influenced by factors like events and habitats (Pustejovsky and Krishnaswamy, 2022)
. Purely linguistic representations of tokens may not capture these factors

. ChatGPT-generated corpus is likely not representative of these aspects

. Our embodied approach enables correlating representations extracted from unembodied models to
representations learned from embodied data

. Provides evidence that the ability to ground real-world entities, properties, or actions to lexical items could
enable LLMs to simulate the human ability to link utterances to specific communicative intents
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Future Work

Score: 0

. Investigating different orders in transformation
. Incorporating images
. Other embodied tasks to investigate other concepts

. Evaluating representations directly from a GPT-like
decoder

. Having an agent learn such correlations in the
environment in real time

Use Number 1 to toggle button info Ul
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