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Introduction

• A common critique of language models is that they are 
“ungrounded” 

• Lack ability to link an utterance to a communicative intent 

• A sophisticated language model can generate text about 

an object without understanding what the object is 👉  

• Grounding usually involves recourse to another modality 

• Wealth of research in cross-modal semantic linking, 
language grounding to images



Introduction
• “Multimodal” doesn’t just mean language+vision 

• Humans don’t just use images as their only non-linguistic modality 

• A wealth of environment and sensory experience is implicated in learning



Introduction
• We take an embodied simulation approach to grounding 

• Use a virtual environment to create experiences for an agent interacting with various objects 

• Object motions leave trajectories in space based on their geometric properties and affordances 

• Similarity learning over agent’s experience can make analogical comparisons between object types … 

• … and appears to learn more abstract properties of the objects 

• Words for concrete nouns (object types) are easy to ground to this representation space using affine transformation 

• Grounding concrete terms provides a scaffold for learning and distinguishing the meaning of other terms in context 

• Explore the properties of different language models for grounding concrete objects to the learned space vs. abstract terms 
(verbs, properties, etc.)



Schematic Overview



Why Do We Think This Will Work?
• As humans map object concept representations to nouns, they also learn to individuate 

them from the perceptual flow, based on experience and interaction, not just visual 
features but also (Spelke, 1985; Spelke et al., 1989; Spelke, 1990; Baillargeon, 1987) 

• Gentner (2006) argues that variability in verbal semantics (Talmy, 1975) helped explain 
why nouns are typically learned before verbs 

• Problem: neural language and “object” (based on visual or tabular data) representation 
spaces are not directly comparable 

• Affine transformation technique between embedding spaces has been successfully 
used in vision and language use cases (McNeely-White et al., 2022; Nath et al., 2022) 

• Here we explore applicability in a cross-modal setting



Sampling Object Properties

Videos
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Similarity Learning of Object Properties



Similarity Learning of Object Properties

• Dataset: Samples gathered from an agent stacking objects in a virtual environment 
• Behavior of different object types under interaction (stacking) 
• Object behavior bootstrapped with ontological knowledge about symmetry 
• E.g., Objects placed on their rounded edges are more likely to roll 
• Object trajectories, geometric features captured through simulated environment 
• Object types: cube, sphere, cylinder, capsule, egg, pyramid, cone, rectangular prism, small cube 
• Captured 43 numerical values describing each object interaction  

• action taken, object position before and after action, orientation before and after action, spatial relations between 
objects, etc. (Ghaffari and Krishnaswamy, 2022)



Similarity Learning of Object Properties

•
Use a CNN with multisimilarity loss  to classify objects by type 

• Construct a similarly matrix  where  is the similarity of samples  according to neural network  with weights  

• Adam optimization, LR 5x10-6, batch size 70, 20 epochs, embedding size 64 

• Train only on a subset of objects (cube, sphere, egg, capsule, small cube, rectangular prism, pyramid) 

• Objects that are all flat-sided or all round-sided 

• Two objects (cylinder, cone) have both flat and round sides 

• Split these samples based on their stacking behavior (stays stacked vs. falls off) 

• Test set includes seven seen classes and four unseen classes
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Similarity Learning of Object Properties
• Neural approaches successfully 

classify these geometric features into 
different object types 

• Unseen classes are also classifiable 
using KNN over embeddings 

• Where confusion arises, they are 
between different flat and different 
round objects 

• Never between these classes 

• Model appears to learn contrast 
between “flatness” and “roundness”



Similarity Learning of Object Properties
• Neural approaches successfully 

classify these geometric features into 
different object types 

• Unseen classes are also classifiable 
using KNN over embeddings 

• Where confusion arises, they are 
between different flat and different 
round objects 

• Never between these classes 

• Model appears to learn contrast 
between “flatness” and “roundness” 

• Two distinct “flat” and “round” clusters!
800 test samples



Language Grounding to Environment



Language Grounding to Environment
• Individual embeddings of the same object 

type form a high-dimensional region defining 
the object representation 

• Ethayarajh (2019) observed similar 
phenomena in the representations of 
contextualized token vectors from LLMs 

• Suggests a structure-preserving mapping 
exists between equivalent regions in 
different embedding space 

• Affine transformation preserves collinearity,  
parallelism



Language Grounding to Environment
• RQ: If agent encounters novel objects, can 

it learn words for them by grounding 
tokens to the object representation space? 
1. Prompt language model: Generate 

sentences containing target term to be 
grounded 

2. Extract token representations: For each 
instance of target token, extract 
contextualized numerical representation 

3. Linear regression between paired 
embedding vectors: Compute 
transformation  with ridge 
regression 

ℳ ∈ ℝdA × ℝdB



Language Grounding to Environment
• Given two models: language model A and 

object representation model B, token 
representations in A and object 
representations in B form subspaces in the 
embedding spaces 

• Vectors chosen from respective embedding 
spaces form at minimum the spanning set of 
the respective regions 

• Vectors chosen to compute  represent 
similar, non-identical instances of token/object, vector subspaces define “concept” in the respective embedding spaces 

• Optimal : structure-preserving 
transformation that transforms new object-denoting tokens into the object-representation region

ℳ
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Language Grounding to Environment
4. Dialogue with a language model: Generate novel 

sentences containing instances of the 
transformed (“grounded”) target term 

5. Extract token-level representations: cf. Step 2 

6. Transform new tokens into object space: 
evaluation - do the expected senses of grounded 
terms cluster with the right objects? 

• Sentence generation: ChatGPT 

• Prompt ChatGPT with sentences about objects 
and their properties, e.g., “Write 40 short 
sentences about how blocks are flat on all sides 
and can be stacked” (total corpus of 440 sentences) 

• Take the most frequently occurring domain-appropriate tokens as candidate target terms



Language Grounding to Environment
• Take most frequently occurring domain 

appropriate tokens as candidate target terms 

• Not just object terms 

• Properties: “flat”/“round”, “stable”/“unstable" 

• Behaviors: “stack”/“roll”, “stand”/“fall” 

• What happens to these terms as object terms are 
grounded? 

• Pull token representations from 4 LMs: 

• BERT, RoBERTa, ALBERT, XLM 

• Compute transformation using only object token 
vectors and object behavior vectors



Language Grounding to Environment
• 5 contextualized embeddings of each target word 

paired with 5 randomly selected representations 
of the associated object 

• Calculate “bridge matrix” using ridge regression 

• Perform iterative experiments, incrementally 
adding new object concepts to improve the 
transformation 

• Order adapted from Ghaffari and 
Krishnaswamy (2022) 

• Evaluate transformation by transforming word 
vectors for concepts not used in computing 
bridge matrix 

• Evaluate KNN classification of terms, and separation of cluster centers 

• Final step: explicit “hint” including 5 embeddings of the novel concept to be grounded and a co-occurring object word



Language Grounding to Environment
• Transformed token clusters separate even when they’re never explicitly seen in transformation

XLM: “flat” (pink) vs. “round” (black)



Language Grounding to Environment
• Transformed token clusters separate even when they’re never explicitly seen in transformation

XLM: “flat” (pink) vs. “round” (black)

Transformation using only cube, sphere, and egg
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Language Grounding to Environment
• Transformed token clusters separate even when they’re never explicitly seen in transformation

XLM: “flat” (pink) vs. “round” (black)

Transformation using only cube, sphere, and egg Using all objects Using all objects + “hint”



Language Grounding to Environment
• Clusters of transformed abstract concept vocabulary separate when transformation includes object words 

• but different models representations behave differently

BERT: “flat” vs. “round” (black) without hinting [L] and with [R]



• Clusters of transformed abstract concept vocabulary separate when transformation includes object words 

• but different models representations behave differently

Language Grounding to Environment

RoBERTa: “flat” vs. “round” (black) without hinting [L] and with [R]
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• but different models representations behave differently
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• Clusters of transformed abstract concept vocabulary separate when transformation includes object words 

• but different models representations behave differently

Language Grounding to Environment

XLM: “flat” vs. “round” (black) without hinting [L] and with [R]



Language Grounding to Environment
• How does addition of information to the transformation affect the similarity of concept clusters?

XLM: “flat” (pink) vs. “round” (black)



Language Grounding to Environment
• Separation of cluster centers (object terms first)

BERT RoBERTa

ALBERT XLM



Language Grounding to Environment
• Separation of cluster centers (abstract terms first) 

• Grounding object terms helps 
distinguish related actions or 
properties (cf. Gentner (2006)) 

• But grounding abstract terms isn’t 
as helpful in making distinctions 
between object terms!

BERT RoBERTa

ALBERT XLM



Language Grounding to Environment
• Formulation as classification task: KNN (k=5) after all object/abstract terms are grounded 

• Do transformed word vectors for 
object-related concept terms 
cluster with the correct set of 
objects? 

• XLM (largest model): 
best with hinting 

• XLM’s larger training and 
embedding size may make it 
better able to represent multiple 
word senses 

• ALBERT (smallest model): 
best without hinting



Language Grounding to Environment
• Hypothesis: 

• XLM representation 
is less “entangled,” more 
compositional 

• ALBERT representation 
is more “entangled,” 
possible bias toward noun- 
verb/adj. correlations  

• Object words and related terms 
may already have some overlap 
in ALBERT space 

• Grounding concepts to a physical 
environment without explicit 
nudging may be more challenging for larger models than smaller ones



Conclusion and Future Work



Conclusion
• Similarity learning over rich data from an embodied simulation create a representation space that.. 

• successfully classifies concrete objects 
• make analogical comparisons based on abstract properties that inhere across multiple object types 

• Used the resulting representation space to investigate the properties of different LLMs regarding object and 
concept representations 

• Simple ridge regression preserves interchangeability across modalities 
• Technique has previously been used in vision-only (McNeely-White et al., 2022) and language-only 

conditions (Nath et al., 2022) 
• Can use these techniques to make AI models behave similarly to human learning, or to examine the properties of 

AI models themselves 
• (Not saying humans use the same technique)



Conclusion
• Our embodied approach allows us to build a model without visual artifacts like occlusion 
• Embodiment is influenced by factors like events and habitats (Pustejovsky and Krishnaswamy, 2022) 
• Purely linguistic representations of tokens may not capture these factors 

• ChatGPT-generated corpus is likely not representative of these aspects 
• Our embodied approach enables correlating representations extracted from unembodied models to 

representations learned from embodied data 
• Provides evidence that the ability to ground real-world entities, properties, or actions to lexical items could 

enable LLMs to simulate the human ability to link utterances to specific communicative intents



Future Work
• Investigating different orders in transformation 
• Incorporating images 
• Other embodied tasks to investigate other concepts 
• Evaluating representations directly from a GPT-like 

decoder 
• Having an agent learn such correlations in the 

environment in real time
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