MULTIMODAL SEMANTIC SIMULATIONS OF LINGUISTICALLY UNDERSPECIFIED MOTION EVENTS

Nikhil Krishnaswamy and James Pustejovsky, Brandeis University August 5, 2016, Spatial Cognition 2016, Philadelphia, PA, USA

- Remarkable number of concepts in human mental model
- Mental models are adaptable
 - Can make sense of new situations, contexts, and kinds of knowledge
 - Can be revised based on new experience
- Mental models are embodied and multimodal
 - Embodiment maps concepts between domains
 - Modalities (perceptual and effector) constitute aspects of representation
- "Simulation": mental instantiation of an utterance, based on embodiment

- Spatial/temporal algebraic interval logic
 - Allen Temporal Relations (Allen, 1983)
 - Region Connection Calculus (RCC8) (Randell et al., 1992)
 - RCC-3D (Albath, et al., 2010)
- Generative Lexicon, DITL (Pustejovsky, 1995; Pustejovsky and Moszkowicz, 2011)
- Static scene generation
 - WordsEye (Coyne and Sproat, 2001)
 - LEONARD (Siskind, 2001)
 - Stanford NLP Group (Chang et al., 2015)
- QSR/Game Al approaches to scenario-based simulation (Forbus et al., 2001; Dill, 2011)
- Spatial constraint mapping to animation (Bindiganavale and Badler, 1998)

Past/Related Research

Allen Temporal Relations

Generated from text: It is morning. It is partly cloudy. the ground is shiny. the grey shiny hill is is on the ground. The 10 foot tall grey cat is 8 feet in the hill. the tiny plane is 7 feet above the hill...

Brandeis University Cognitive Linguistic Simulation

"Enterp the parking lot"

Path depends on bounds of parking lot

"Enter" is a **path** verb (Pustejovsky and Moszkowicz, 2011)

Cognitive Linguistic Simulation

"Hurrym to the car"

Path depends on location of car

"Hurry" is a **manner of motion** verb (Pustejovsky and Moszkowicz, 2011)

- Path verbs designate a distinguished
 value in the state-to-state location change
 - Change in value is tested
- Manner of motion verbs iterate a stateto-state location change
 - Change in value is assigned/reassigned
- Verbs can be realized as **programs** enacted over arguments (Naumann, 1999)

Events as Programs

Brandeis University

- Programs are compositional
 - Program's linguistic representation can be broken down into subevents
- Simple programs
 - translocate, rotate, grasp, hold, release, etc.
- Complex programs
 - put, stack, etc.

put(A, B)

- a. Given C being satisfied (A is clear, within reach, etc), then grasp A, and while hold A, move A until at position B.
- b. \mathcal{C} ?; grasp(A); (hold(A)?; move(A))*; on(A,B)?; ungrasp(A); $\neg hold(A)$?

- VoxML: Visual Object Concept Modeling Language
 (Pustejovsky and Krishnaswamy, 2016)
- Annotation and modeling language for "voxemes"
 - Visual instantiation of a lexeme
- Scaffold for mapping from lexical information to simulated objects and operationalized behaviors
- Encodes afforded behaviors for each object
 - Gibsonian afforded by object structure (e.g. grasp, move, lift) (Gibson, 1977; 1979)
 - Telic goal-directed, purposeful (e.g. drink from)(Pustejovsky, 1995)

$$\begin{bmatrix} \mathbf{cup} \\ \mathrm{LEX} = \begin{bmatrix} \mathrm{PRED} = \mathbf{cup} \\ \mathrm{TYPE} = \mathbf{physobj} \end{bmatrix} \\ \mathrm{TYPE} = \begin{bmatrix} \mathrm{HEAD} = \mathbf{cylindroid[1]} \\ \mathrm{COMPONENTS} = \mathbf{surface,interior} \\ \mathrm{CONCAVITY} = \mathbf{concave} \\ \mathrm{ROTATSYM} = \{Y\} \\ \mathrm{REFLECTSYM} = \{XY, YZ\} \end{bmatrix} \\ \mathrm{HABITAT} = \begin{bmatrix} \mathrm{INTR} = _{[2]} \begin{bmatrix} \mathrm{UP} = align(Y, \mathcal{E}_Y) \\ \mathrm{TOP} = top(+Y) \end{bmatrix} \\ \mathrm{EXTR} = ... \\ \\ \mathrm{AFFORD_STR} = \begin{bmatrix} A_1 = H[2] \rightarrow [put(x, on([1]))]support([1], x) \\ A_2 = H[2] \rightarrow [put(x, in([1]))]contain([1], x) \\ A_3 = H[2] \rightarrow [grasp(x, [1])] \end{bmatrix} \\ \mathrm{EMBODIMENT} = \begin{bmatrix} \mathrm{SCALE} = \langle \mathbf{agent} \\ \mathrm{MOVABLE} = \mathbf{true} \end{bmatrix}$$

$$\begin{bmatrix} \textbf{in} \\ \text{LEX} = \begin{bmatrix} \text{PRED} = \textbf{in} \end{bmatrix} \\ \text{TYPE} = \begin{bmatrix} \text{CLASS} = \textbf{config} \\ \text{VALUE} = \textbf{ProperPart} \parallel \textbf{PO} \\ \text{ARGS} = \begin{bmatrix} A_1 = \textbf{x:3D} \\ A_2 = \textbf{y:3D} \end{bmatrix} \\ \text{CONSTR} = \textbf{...} \end{bmatrix}$$

We begin by inputting a sentence in plain English

Put the spoon in the mug

VoxSim: Software Architecture

VoxSim: Software Architecture

From a dependency parse, we extract labeled entities in the scene, and verbs those entities may afford

VoxSim: Software Architecture

Resolve the parsed sentence into a predicate-logic formula

VoxSim: Software Architecture

Each predicate is operationalized according to its type structure

put(spoon,in(mug))

- in(z): takes object,outputs location
- put(x,y): path verb
 - while(!at(y), move(x))

- Object bounds may not contour to geometry
 - e.g. Concave objects
- Semantic information imposes further constraints
- "in cup": (PO | TPP | NTPP)with area denoted by cup'sinterior
 - Interpenetrates bounds,but not geometry

- Can test be satisfied with current object configuration?
- Can test be satisfied by reorienting objects?
- Can test be satisfied at all?

- Temporary parent-child relationship between joint on rig and manipulated object
- Allows agent and object to move together
- "Object model" + "Action model" = "Event model"

- Platform for incorporating motion/dynamic semantics into visualization
 - Visualization → Simulation → Minimal Model
- Runtime visualization generation necessitates assigning values in the simulation to parameters unspecified in minimal model
 - e.g. speed, direction, etc.
- Complete set of primitive programs in a particular domain unknown

- Monte-Carlo simulation generation with multiple evaluation tasks
 - Given visualization with randomly-assigned underspecified variables, choose best description
 - Given description, choose best visualization from randomly-generated set
 - Automatic evaluation of actual simulation result vs.
 DITL-derived satisfaction conditions
- Corpus building for linked videos and simulations with event labels for machine learning of event classification

Brandeis University Student Workers

Jessica Huynh Paul Kang Subahu Rayamajhi Amy Wu Beverly Lum Victoria Tran